Detecting gravitational waves with resonant effects in bound astrophysical systems

Diego Blas

MINISTERIO DE CIENCIA, INNOVACIÓN **Y UNIVERSIDADES**

AGENCIA ESTATAL DE INVESTIGACIÓN

i Universitats **Fundación**

European Research Council

GWs (essentials)

c = 1

 $\rho_{\rm gw} = \frac{16}{16}$ $\Omega_{\rm gw}(f) \equiv \frac{1}{\rho_c} \frac{\mathrm{d}\rho_{\rm gy}}{\mathrm{d}(\ln f)}$ $h^2 \Omega_{\rm gw}(f) \qquad h \approx 0.67$

- Perturbations of space-time travelling as waves of frequency f
- Characterised by 2 polarizations $h_{+,\times}$ (dimensionless)
 - $h_{+.\times} \approx h_0 \cos\left(2\pi f(t-z) + \phi\right)$
 - GWs carry energy. They have energy density

$$\frac{1}{6\pi G}\left\langle \dot{h}_{+}^{2}+\dot{h}_{\times}^{2}\right\rangle$$

$$\frac{g_{\rm w}}{f} \qquad \rho_c = 1.2 \times 10^{11} M_{\odot} \,{\rm Mpc}^{-3} \\ \sim {\rm keV/cm}^3$$

GWs (typologies)

@astronerdika

GWs soundscape today

GWs searches ca. 2036

GWs searches ca. 2036

f [Hz]

1908.11391 [astro-ph.IM] Sesana et al.

h

The µAres detection landscape 10⁻¹⁴ ~1000 inspiralling SMBHBs out to z~10 10⁻¹⁵ SgrA*+0.05M $_{\odot}$ 10⁶ yr to merger SKA Hundreds of merging MBHBs out to z~20 10⁻¹⁶ ~100k Galactic DWDs Characteristic amplitude SgrA*+10M $_{\odot}$ 10⁸ yr to merger ~100 Galactic BHBs Galactic binaries GWB 10⁻¹⁹ Cosmological MBHB GWB $10^{8}M_{\odot}$ +10⁴M_{\odot} IMRI @z=7 $^{\prime}$ $10^{7}M_{\odot}$ +10⁴M_{\odot} IMRI @z=7 10⁻²⁰ **_ISA** $10^7 M_{\odot} + 10^3 M_{\odot}$ IMRI @z=1 $3 \times 10^5 M_{\odot}$ +10 M_{\odot} EMRI @z=1 >1k extragalactic BHBs 10⁻²¹ µAres 10⁻⁸ 10⁻¹ 10⁻² 10^{-6} 10^{-3} 10^{-9} 10^{-1} 10^{0}

Frequency [Hz]

Astrophysical backgrounds

2301.13854 [astro-ph.CO] Ellis et al

Evidence form PTA 2023

Backgrounds from fundamental physics

Intuitive idea (from '60s) Influence of a GW on a binary system (e.g. non-relativistic)

 $f \sim \mu \text{Hz}$

few days

$$\ddot{r}^i + \frac{GM}{r^3}r^i =$$

Better characterised for its 6 Newtonian constants of motion

- period *P*, eccentricity *e*: size and shape of orbit
- Inlination *I*, ascending node *Ω*:
 orientation in space
- pericentre ω,
 mean anomaly at epoch ε:
 radial and angular phases

for generic perturbation:

 $\delta \ddot{m{r}} = r(\mathcal{F}_r \hat{m{r}} + \mathcal{F}_ heta \hat{m{ heta}} + \mathcal{F}_\ell \hat{m{ heta}}), \quad \hat{m{ heta}}$

$$\begin{split} \dot{P} &= \frac{3P^2\gamma}{2\pi} \left[\frac{e\sin\psi\mathcal{F}_r}{1+e\cos\psi} + \mathcal{F}_{\theta} \right], \\ \dot{e} &= \frac{\dot{P}\gamma^2}{3Pe} - \frac{P\gamma^5\mathcal{F}_{\theta}}{2\pi e(1+e\cos\psi)^2}, \\ \dot{I} &= \frac{P\gamma^3\cos\theta\mathcal{F}_{\ell}}{2\pi(1+e\cos\psi)^2}, \\ \dot{\varphi} &= \frac{\tan\theta}{\sin I}\dot{I}, \\ \dot{\omega} &= \frac{P\gamma^3}{2\pi e} \left[\frac{(2+e\cos\psi)\sin\psi\mathcal{F}_{\theta}}{(1+e\cos\psi)^2} - \frac{\cos\psi\mathcal{F}_r}{1+e\cos\psi} \right] - \cos\psi \\ \dot{\varepsilon} &= -\frac{P\gamma^4\mathcal{F}_r}{\pi(1+e\cos\psi)^2} - \gamma(\cos I\dot{\varphi} + \dot{\omega}), \end{split}$$

Ω

 $\ddot{\boldsymbol{r}} + \frac{GM}{r^2} \hat{\boldsymbol{r}} = \delta \ddot{\boldsymbol{r}}.$

for generic perturbation:

 $\delta \ddot{\boldsymbol{r}} = r(\mathcal{F}_r \hat{\boldsymbol{r}} + \mathcal{F}_{ heta} \hat{\boldsymbol{ heta}} + \mathcal{F}_{\ell} \hat{\boldsymbol{\ell}}),$

$$\begin{split} \dot{P} &= \frac{3P^2\gamma}{2\pi} \left[\frac{e\sin\psi\mathcal{F}_r}{1+e\cos\psi} + \mathcal{F}_{\theta} \right], \\ \dot{e} &= \frac{\dot{P}\gamma^2}{3Pe} - \frac{P\gamma^5\mathcal{F}_{\theta}}{2\pi e(1+e\cos\psi)^2}, \\ \dot{I} &= \frac{P\gamma^3\cos\theta\mathcal{F}_{\ell}}{2\pi(1+e\cos\psi)^2}, \\ \dot{\varphi} &= \frac{\tan\theta}{\sin I}\dot{I}, \\ \dot{\omega} &= \frac{P\gamma^3}{2\pi e} \left[\frac{(2+e\cos\psi)\sin\psi\mathcal{F}_{\theta}}{(1+e\cos\psi)^2} - \frac{\cos\psi\mathcal{F}_r}{1+e\cos\psi} \right] - \cos\psi \\ \dot{\varepsilon} &= -\frac{P\gamma^4\mathcal{F}_r}{\pi(1+e\cos\psi)^2} - \gamma(\cos I\dot{\varphi} + \dot{\omega}), \end{split}$$

For the SGWB...Fokker-Planck approach
$$\ddot{r}^i + \frac{GM}{r^3}r^i = \delta^{ik}\frac{1}{2}\ddot{h}_{kj}r^j$$
deterministic $\dot{X}_i(\boldsymbol{X},t) = V_i(\boldsymbol{X}) + \Gamma_i(\boldsymbol{X},t)$ stochastic

we move from dynamics of the variable to dynamics of the distribution W(X)

$$\frac{\partial W}{\partial t} = -\partial_i \left(D_i^{(1)} W \right) + \partial_i \partial_j \left(D_{ij}^{(2)} W \right)$$
with $\partial_i \equiv \partial/\partial X_i$

$$D_i^{(1)} = V_i + \lim_{\tau \to 0} \frac{1}{\tau} \int_t^{t+\tau} dt' \int_t^{t'} dt'' \left\langle \Gamma_j \left(\boldsymbol{x}, t'' \right) \partial_j \Gamma_i \left(\boldsymbol{x}, t' \right) \right\rangle.$$

$$D_{ij}^{(2)} = \lim_{\tau \to 0} \frac{1}{2\tau} \int_t^{t+\tau} dt' \int_t^{t+\tau} dt'' \left\langle \Gamma_i \left(\boldsymbol{x}, t' \right) \Gamma_j \left(\boldsymbol{x}, t'' \right) \right\rangle.$$

timing of binary pulsars

Two probes $f \sim \mu \text{Hz}$ few days lunar and satellite laser ranging

Our estimates from 2021 for 2038

Blas&Jenkins Phys.Rev.Lett. 128 (2022) 10, 101103

Satellites Earth based (P~hours)

Lunar laser ranging (P~month)
 (2038 line requires replacing the mirrors
 ...may/will happen before 2030!)

Murphy 1309.6294

We may see the signal of PTAs!!!

in 2050 $\Omega \lesssim 3 \times 10^{-9} \text{ at } f \sim \mu \text{Hz}$

- ····· NANOGrav
- SMBBHs
- FOPTs
- SMBH mimickers

 10^{2}

····· Ultralight bosons

Possible backgrounds

There's more information in the data

(work in progress: Foster, Blas, Bourguin, Foster, Hees, Herrero, Jenkins)

There's more information in the data

(work in progress: Foster, Blas, Bourguin, Foster, Hees, Herrero, Jenkins)

Sensitivity By ECCENtrICITY

(work in progress: Foster, Blas, Bourguin, Foster, Hees, Herrero, Jenkins)

We were too pessimistic!

New ideas for the Moon

Current data, no degeneracies

the orbital models are complex: degeneracies!

Caveats

Other resonant effects (tidal dissipation)

cherry picking the GW: full degeneracy

Libration

$$\ddot{r}^i + \frac{GM}{r^3}r^i = \delta^{ik}\frac{1}{2}\ddot{h}_{kj}r^j$$

First study to appear with Lizalde and Giménez

we can generate enough libration to be detectable....

$\ddot{ au} - rac{3}{2}rac{B-A}{C}rac{Gm_s}{r^3}\sin(2\psi) = \delta f$

Other systems

 \dot{r}^{i}

Any gravitationally bound system can test this

$$+ \frac{GM}{r^3} r^i = \delta^{ik} \frac{1}{2} \ddot{h}_{kj} r^j$$

the existence of a background heats up orbits

$$\frac{\delta P}{\delta t} \sim \frac{9P^2}{4} \sum_{n=1}^{\infty} nH_0^2 \Omega_n$$

in 5 billion years, this can have tremendous effects

Ultralight dark matter

We are sensitive to oscillating gravitational potentials

$$\mathcal{L} = \frac{1}{2} \left[\left(\partial_{\mu} \phi \right)^{2} - m^{2} \phi^{2} \right] \qquad \Rightarrow \quad \phi_{k} \sim e^{i(\omega t - kx)} \quad \text{in a virialized ha}$$

$$v_{max} \quad d^{3} v \, e^{-v^{2}/\sigma_{0}^{2}} e^{i\omega_{v}t} e^{-im\vec{v}\cdot\vec{x}} e^{if_{\vec{v}}} + c.c. \qquad \Rightarrow \quad \phi \propto \phi_{0} \cos(mt + f)$$

$$distribution: \quad \sigma_{0} \sim 10^{-3}c \quad \text{in the MW} \qquad \omega_{v} \approx m(1 + v^{2})$$

$$\mathcal{L} = \frac{1}{2} \left[\left(\partial_{\mu} \phi \right)^{2} - m^{2} \phi^{2} \right] \qquad \Rightarrow \quad \phi_{k} \sim e^{i(\omega t - kx)} \quad \text{in a virialized ha}$$

$$\phi \propto \int_{0}^{v_{max}} \mathrm{d}^{3} v \, e^{-v^{2}/\sigma_{0}^{2}} e^{i\omega_{v}t} e^{-im\vec{v}\cdot\vec{x}} e^{if_{\vec{v}}} + c.c. \qquad \Rightarrow \quad \phi \propto \quad \phi_{0} \cos(mt + f)$$

$$\phi \propto \int_{0}^{v_{max}} \mathrm{d}^{3} v \, e^{-v^{2}/\sigma_{0}^{2}} e^{i\omega_{v}t} e^{-im\vec{v}\cdot\vec{x}} e^{if_{\vec{v}}} + c.c. \qquad \Rightarrow \quad \phi \propto \quad \phi_{0} \cos(mt + f)$$

$$\phi \propto \int_{0}^{v_{max}} \mathrm{d}^{3} v \, e^{-v^{2}/\sigma_{0}^{2}} e^{i\omega_{v}t} e^{-im\vec{v}\cdot\vec{x}} e^{if_{\vec{v}}} + c.c. \qquad \Rightarrow \quad \phi \propto \quad \phi_{0} \cos(mt + f)$$

$$\phi \propto \int_{0}^{v_{max}} \mathrm{d}^{3} v \, e^{-v^{2}/\sigma_{0}^{2}} e^{i\omega_{v}t} e^{-im\vec{v}\cdot\vec{x}} e^{if_{\vec{v}}} + c.c. \qquad \Rightarrow \quad \phi \propto \quad \phi_{0} \cos(mt + f)$$

If dark matter can be treated as a classical field (it happens for $m \ll 10^{-9} m_p$)

alo

Gravitational wave detection through their absorption by binaries

The resonant absorption of GWs by binaries may give a handle

Blas&Jenkins Phys.Rev.Lett. 128 (2022) 10, 101103 (in 2038, from LLR)

2025: the use of time of arrival makes it even more sensitive!

Future:

other systems (libration, Oort,...)

- The μ Hz band is very rich for **astrophysical** and **cosmological** sources

 - $\Omega_{\rm gw} \ge 4.8 \times 10^{-9}$ $f = 0.85 \,\mu{\rm Hz}$ $\Omega_{\rm gw} \ge 8.3 \times 10^{-9}$ $f = 0.15 \,{\rm mHz}$
 - guaranteed physics case!!!!
 - Complete data analysis (work in progress: Foster, Blas, Bourguin, Foster, Hees, Herrero, Jenkins)
- esa mini-F: dedicated mission with large P and e

Help to perform the real analysis welcome!

Miró, 1937. "Help Spain" poster calling for international help in to support the democratic republic in the Spanish Civil war.

