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A B S T R A C T

Spectral methods yield numerical solutions of the Galerkin-truncated versions of nonlinear partial differential equations (PDEs) involved especially 
in fluid dynamics. In the presence of discontinuities, such as shocks, spectral approximations develop Gibbs oscillations near the discontinuity. 
This causes the numerical solution to deviate quickly from the true solution. For spectral approximations of the inviscid Burgers equation in one-

dimension (1D), nonlinear wave resonances lead to the formation of localised oscillatory structures called tygers in well-resolved areas of the flow, 
far from the shock. Recently, the author of [1] has proposed novel spectral relaxation (SR) and spectral purging (SP) schemes for the removal of 
tygers and Gibbs oscillations in spectral approximations of nonlinear conservation laws. For the 1D inviscid Burgers equation, it is shown in [1] that 
the novel SR and SP approximations of the solution converge strongly in 𝐿2 norm to the entropic weak solution, under an appropriate choice of 
kernels and related parameters. In this work, we carry out a detailed numerical investigation of SR and SP schemes when applied to the 1D inviscid 
Burgers equation and report the efficiency of shock capture and the removal of tygers. We then extend our study to systems of nonlinear hyperbolic 
conservation laws, such as the 2 × 2 system of the shallow water equations and the standard 3 × 3 system of 1D compressible Euler equations. For 
the latter, we generalise the implementation of SR methods to non-periodic problems using Chebyshev polynomials. We then turn to singular flow 
in the 1D wall approximation of the 3D-axisymmetric wall-bounded incompressible Euler equation [2]. Here, in order to determine the blowup time 
of the solution, we compare the decay of the width of the analyticity strip, obtained from the pure pseudospectral method (PPS), with the improved 
estimate obtained using the novel spectral relaxation scheme.

1. Introduction

Spectral methods are routinely used for numerical investigations of fluid dynamics PDEs, particularly for studying turbulence in the 
3D incompressible Navier–Stokes equations [3]. When solutions of these PDEs are smooth, e.g., in elliptic or parabolic problems, it is 
well-established that spectral and pseudospectral methods exhibit superior accuracy and efficiency of implementation when compared 
to local (in real space) schemes, such as finite-difference and finite-element methods. This is because the complexity of computing 
linear gradients is significantly reduced with a spectral basis. Since spectral approximations use global and smooth functions as the 
approximation basis, they converge to the exact smooth (with analytic or Gevrey regularity) solution with an exponential rate of 
convergence, also called spectral convergence [4–6]. The spectral solution of the Galerkin-truncated PDE is then, roughly speaking, 
the classical solution of the full PDE [7].

However, traditional spectral methods are not well-suited for solving nonlinear hyperbolic PDEs, where we frequently encounter 
discontinuities (shocks) in finite time. When we resolve discontinuous solutions using high-order spectral schemes, the approxima-

tions develop Gibbs oscillations near the discontinuity and suffer from non-uniform convergence. The nonlinear terms then cause 
Gibbs oscillations to mix with and corrupt the solution far away from the discontinuity, resulting in aliasing errors. The situation 
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worsens for nonlinear hyperbolic conservation laws such as the 1D inviscid Burgers and the 1D compressible Euler equations. The 
absence of physical dissipation in these equations allows for uninhibited growth of Gibbs errors and round-off errors; this makes spec-

tral schemes highly prone to destabilisation [8–10]. Even if we mitigate aliasing instabilities, Gibbs oscillations destroy pointwise 
convergence and render the scheme only first-order accurate. For example, 2∕3-dealiasing prevents the spectral approximation of the 
1D inviscid Burgers equation from converging to the exact entropic weak solution with energy-dissipating shocks [3]. Stabilisation 
of spectral schemes is particularly challenging for standard Riemann problems in gas dynamics, modelled by the 1D compressible 
Euler equations. Discontinuous initial data and the interaction of shocks with fine structures in these systems render spectral schemes 
virtually unusable [11]. Thus, spectral methods have received limited attention for modelling shock capture in nonlinear hyperbolic 
conservation laws.

On the other hand, low-order schemes based on finite-difference and finite-volume methods have had more success. The inherent 
numerical dissipation of these schemes is carefully tuned to allow for accurate resolution of the shocks [12–14]. However, when 
used to resolve specific flows that contain discontinuities and smoothly varying fine structure, these schemes can overdamp the 
latter. Spectral methods contribute very little or no inherent numerical dissipation, when used to approximate derivatives of the flow 
field; this means that, although we have to suppress Gibbs oscillations, we can achieve better control of the dissipation mechanism. 
Moreover, far from the shock, low-order schemes exhibit reduced accuracy and slow convergence to the smooth solution, whereas 
spectral methods can achieve much higher-order convergence [15]. High-order and high-resolution finite-element schemes, such as the 
weighted essentially non-oscillatory (WENO) and discontinuous Galerkin (DG) methods are state-of-the-art schemes which perform 
well for some of the most challenging problems in computational fluid dynamics, such as the interaction of blast waves [16,17], 
and, more recently, the numerical study of anomalous energy dissipation in incompressible Euler flows [18]. However, a significant 
limitation of these methods is the complexity of implementation and computational cost [19–23]. Thus, we would like to extend 
the use of spectral methods to shock-capture problems, as they have the potential to provide high-order approximations with a 
comparatively straightforward and low-cost implementation [24,10,25].

At this point it is worthwhile to recall some results about the well-posedness of the Cauchy problem for the nonlinear hyperbolic 
conservation laws that we consider here. For a scalar conservation law, the global-in-time existence and uniqueness of entropic weak 
solution with initial data in 𝐿∞ ∩ BV (where BV is the space of functions with bounded variation) was first established by Oleinik 
[26] in one space dimension and by Kruzhkov [27] in several space dimensions. In this work, an entropic weak solution means a 
solution that satisfies first, the scalar conservation law in the sense of distributions and second, an entropy inequality in the sense 
of distributions for any convex entropy and its associated entropy flux (e.g., in the case of the Burgers equation the energy is a 
convex entropy). The proof of existence is based on the vanishing viscosity method while the proof of uniqueness is based on the 
Kruzhkov entropy method (see, e.g., [28,29]). For systems of nonlinear hyperbolic conservation laws in one space dimension, the 
Cauchy problem has been largely developed by ad hoc methods, along two main lines. First the 𝐿∞ setting, considered by Tartar and 
DiPerna [30], is based on weak convergence of vanishing viscosity solutions, on existence of convex entropy-entropy flux pairs, and 
on a compensated compactness argument. Indeed, for a class of 2 × 2 systems, one can show that the weak limit actually provides a 
global-in-time distributional solution to the nonlinear system. The proof relies on a compensated compactness argument, based on 
the representation of the weak limit in terms of Young measures, which must reduce to a Dirac mass due to the presence of a large 
family of entropies [30,29,31]. However, the method of compensated compactness appears to be suitable only for 2 × 2 systems and 
do not provide uniqueness of solutions. In fact it is only in the BV setting, considered by Glimm [32], that the well-posedness of 
the Cauchy problem could recently be proved. Global-in-time weak solutions are here constructed within a space of functions with 
bounded variation, controlling the BV norm by a wave interaction functional. In this setting, one can show the existence, uniqueness, 
continuous dependence and global stability of entropic weak solution for general 𝑁 ×𝑁 systems of nonlinear hyperbolic conservation 
laws with small BV initial data and Lipschitz flux functions [33–36]. In this work, an entropic weak solution means a global-in-time 
distributional solution which satisfies some entropy conditions such as the Lax [37] or Liu [38,39] entropy conditions. The proof relies 
on the front-tracking method, which is based on exact and approximate solutions of the Riemann problem where the characteristic 
fields (or families of waves) are assumed to be genuinely nonlinear or linearly degenerate (for more details, see, e.g., [37–39]). 
Finally, it seems also natural to develop a theory of vanishing viscosity approximations within the same space BV. This was indeed 
accomplished in [40], in the more general framework of nonlinear hyperbolic systems not necessarily in conservative form. The only 
assumptions needed here are the strict hyperbolicity of the system and the small total variation of the initial data. Assuming, in 
addition, that each characteristic field is genuinely nonlinear or linearly degenerate, the vanishing viscosity solutions coincide with 
the unique limits of Glimm and front-tracking approximations constructed in [35,36]. Finally, for systems of nonlinear hyperbolic 
conservation laws in several space dimensions, existence and uniqueness of global-in-time weak solutions remain open problems.

To model nonlinear hyperbolic conservation laws using spectral methods, we should control Gibbs oscillations near the discon-

tinuity and thereby recover spectral or high-order convergence, at least in the piecewise smooth areas of the flow. Early attempts 
to control the growth of high-frequency errors used post-processing methods based on filtering, wherein a high-order spectral filter 
was applied to improve the accuracy of the solution away from the discontinuity [41–44,15,45]. Filtering techniques have since been 
adapted to applications in the physical domain and for systems of nonlinear conservation laws [15,46]. Since solutions to different 
problems have different spectral distributions, the filter chosen for optimal shock capture in one problem might perform poorly in 
another. Then, it is desirable to have only a few parameters for the filtering scheme that can be tuned effectively across implemen-

tations. Time evolution of the solution presents another challenge as the filtering needs to be updated dynamically to apply just 
enough dissipation for accurate shock capture. For non-periodic problems, applying filtering at the boundaries can be challenging, 
especially for the 1D compressible Euler equations, where we require characteristic-compatibility (CCM) methods [47]. Here we note 
2

that in hyperbolic problems, any error at the boundary travels into the domain with incoming waves, unlike elliptic PDEs, where the 
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boundary errors remain localised at the boundary. The lack of physical dissipation and the conservative nature of the spectral scheme 
can quickly amplify these errors and cause temporal stability to be lost [3,48].

Since spectral schemes for nonlinear hyperbolic conservation laws conserve energy, introducing a small amount of numerical 
(vanishing) viscosity in the schemes is a natural mechanism to obtain entropic weak solutions that dissipate the energy. Tadmor [11]

developed the spectral vanishing viscosity (SVV) method by adding dissipation to the PDE through an elliptic operator of second order, 
on the right-hand side of the PDE, and a viscous regularisation kernel for building the numerical diffusion coefficient. The kernel 
was chosen to provide optimal damping of higher wavenumber modes of the solution, leaving low wavenumber modes unchanged. 
The stability and convergence analysis is more tractable for the SVV method than for filtering schemes. For the 1D inviscid Burgers 
equation, [11] established convergence of the SVV approximation to the entropic weak solution that dissipates energy. The kernel 
choice for the viscous term was improved by [49,50], and the convergence analysis (under the assumption that the approximate 
solution is uniformly bounded in 𝐿∞) was extended to hyperviscous kernels by [51]. The convergence analysis of the SVV method 
is yet to be established mathematically for systems of nonlinear hyperbolic conservation laws, but numerical explorations have been 
carried out by [11]. The modification for non-periodic problems, using Legendre polynomials, was initiated in [52,53]. Despite viscous 
regularisation, the high-order SVV approximations still exhibit small oscillations with a bounded amplitude near the shock [54]. We 
present a brief note on the implementation of the SVV method for the 1D inviscid Burgers equation in Appendix A.

Recently, [55] investigated the 2/3-dealiased spectral approximation of the 1D-periodic inviscid Burgers equation, starting from 
harmonic initial data. The authors reported spontaneous growth of localised oscillatory structures called tygers away from the shock 
in smooth regions of the flow. In the Fourier spectrum, tygers manifest as a ‘boundary layer’ close to the time of singularity when 
spectral convergence is lost. These structures collapse and spread throughout the domain and serve as precursors to thermalisation in 
the energy-conserving Galerkin-truncated Burgers equation [56]. Tygers have also been reported in the case of the 2D incompressible 
Euler equation, where there is no finite-time singularity, but the flow develops ever-decreasing length scales [55,57]. Further discus-

sion on tygers and thermalisation in Galerkin-truncated 3D incompressible Euler equation and Galerkin-truncated Burgers equation 
can be found in [58–64]. Subsequently, [65] developed the first tyger-purging (TP) scheme for the 1D inviscid Burgers equation. Here, 
dissipation is provided by selectively purging Fourier modes of the velocity field that lie above the cut-off purging wavenumber 𝐾𝑃 . 
The purging step is performed at discrete times separated by a purging timescale 𝜏𝑃 . The parameters controlling the dissipation rate, 
𝐾𝑃 and 𝜏𝑃 , are tuned to match the energy decay of the purged spectral approximation with that of the actual entropic solution. The a 
priori knowledge of the existence and energy decay of an entropic solution is crucial for the successful implementation of this scheme. 
Thus, extensions to systems of nonlinear conservation laws and to multidimensional nonlinear PDEs are non-trivial. Furthermore, the 
stability and convergence of the tyger-purging scheme are yet to be investigated mathematically. The removal of tygers, by using 
wavelet analysis, has been investigated numerically in [66–68].

There has been a recent renewal of interest in controlling the growth of high-frequency errors in spectral approximations; this 
is partly because of the limiting role played by tygers and Gibbs oscillations in the spectral search for finite-time singularities in 
hydrodynamical PDEs. Historically, numerical investigations of potentially singular flows have proved to be delicate and challenging 
tasks [69]. The numerical schemes have to resolve accurately the ever-decreasing flow scales, while operating within the computa-

tional constraints of fixed precision and finite resolution. Spectral methods have been used to study the finite-time-blowup problem in 
many systems: the 1D-periodic inviscid Burgers equation [57,70,71], the 3D incompressible Euler equations in a periodic cube [72,73], 
the 3D incompressible, ideal magneto-hydrodynamic equations in a periodic cube [74], and more recently, to investigate a potentially 
singular solution of the 3D-axisymmetric wall-bounded incompressible Euler equation [75,76]. Spectral methods achieve reliable sin-

gularity tracking through the analyticity-strip technique [57,70], in which the rate of exponential decay of Fourier spectra can be 
used to deduce the distance 𝛿 of the nearest complex singularity from the real-axis [77] (for extensions to Chebyshev spectral methods 
see [78,75]). This decay rate yields the width 𝛿(𝑡) of the analyticity strip; if 𝛿(𝑡) vanishes at 𝑡 = 𝑡∗, the complex singularity manifests 
itself as a finite-time singularity. For the 1D inviscid Burgers equation, spectral estimates of 𝛿(𝑡) exhibit power-law behaviour with 
an intercept on the 𝑡 axis at 𝑡∗, the time of singularity (or blowup time). However, we can only use the analyticity strip method as 
long as we have spectral convergence of the solution. After this time, we cannot extract 𝛿(𝑡) reliably as the emergence of tygers and 
subsequent thermalisation contaminate the Fourier spectrum with the energy back-flow from higher wavenumbers. Recent investi-

gations [75] of the potential singularity in the 3D-axisymmetric wall-bounded incompressible Euler equations report tygers in the 
flow variables. In particular, the authors of Ref. [75] use a 2∕3-dealiased pseudospectral scheme to control the aliasing instability. 
Dealiasing leads to a significant reduction in the number of usable Fourier modes, which limits the time for which the potential 
singularity can be tracked. The addition of controlled dissipation to the spectral scheme can help mitigate the aliasing instability, 
while avoiding dealiasing; this can extend the time until which 𝛿 can be extracted reliably. This dissipative mechanism, which can 
resemble the spectral shock-capturing schemes discussed earlier, might be able to control Gibbs oscillations and tygers, and to delay 
thermalisation.

Recently, Besse [1] has proposed novel spectral schemes for approximating the solution of nonlinear conservation laws — namely, 
the spectral relaxation (SR) and spectral purging (SP) methods. For the 1D inviscid Burgers equation, [1] presents a mathematical 
proof for convergence in the 𝐿2 norm, of the SR and SP approximations to the unique entropic weak solution under a suitable choice 
of kernels and related parameters. In the SR scheme, dissipation is built into the PDE through a Bhatnagar-Gross-Krook (BGK)-type 
relaxation operator; the kernel used for the relaxation mechanism damps the high wavenumber modes of the solution. The SR scheme 
is similar to the SVV method, in that the dissipation is built into the PDE. The dissipative mechanism, however, is very different; 
SVV methods use a viscous term, while SR methods use a relaxation-type mechanism. Indeed, in the SVV method, the monotonicity 
property and the maximum principle of the associated solution operator (on which 𝐿∞ bounds and Krushkov BV theory are built) are 
3

obtained thanks to a dissipative operator given by the Laplacian (or viscosity) regularisation. Unlike the viscosity regularisation, the 
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solution operator associated with SR and SP methods (using a BGK-type relaxation operator for the dissipative operator on the right-

hand of the PDE) lack the monotonicity property and the maximum principle. Let us note in passing that the loss of these properties 
is also present in hyperviscosity regularisations, for which a proof of an 𝐿∞ bound for the approximate solution, and thus a complete 
convergence analysis, are still open problems. In SR and SP methods, the monotonicity property and the maximum principle are 
recovered, not by the special structure of the dissipative operator (like the Laplacian in the SVV method) but by the property of the 
convolution kernels involved in the definition of the relaxation operator (especially the positivity of kernels). Moreover, the criteria 
for the selection of convolution kernels are also very different for SR and SVV schemes. In the SP method, the spectral approximation 
is convolved with a regularising kernel at discrete times; this purging step damps the high-wavenumber modes and removes Gibbs 
oscillations and tygers in the approximate solution. The SP scheme is the mathematically rigorous counterpart of the tyger-purging 
(TP) scheme [65]; the former can also be extended to problems where we do not know a priori the entropic solution.

In this work, we conduct rigorous numerical studies of the SR and SP approximations applied to nonlinear hyperbolic PDEs. For 
the 1D inviscid Burgers equation, we perform an extensive comparative study of SR and SP schemes and the pure pseudospectral 
scheme (PPS) at various times related to the formation and development of shocks. We obtain the SR and SP approximations by using 
different kernels; in particular, we see good visual convergence with the high-order de La Vallée Poussin kernel which is not positive. 
For the 1D inviscid Burgers equation, we perform numerical convergence analysis of the SR approximation using 𝐿1 and 𝐿2 errors. 
We then compare the shock capture achieved with SR and SP schemes and the standard SVV scheme. We numerically extend the 
application of SR schemes to 2 × 2 and 3 × 3 systems of nonlinear hyperbolic conservation laws — namely, the 1D shallow water 
equations and the 1D compressible Euler equations, respectively. Here, we conduct exhaustive tests with multiple standard problems 
per model. Finally, we use the SR method to improve the tracking of the finite-time singularity for the 1D wall approximation [79,80]

of the 3D-axisymmetric wall-bounded incompressible Euler equation [2].

The remainder of this article is organised as follows. In Section 2, we describe in detail the implementation of pure pseudospectral 
(PPS), spectral relaxation (SR), and spectral purging (SP) methods. We also outline the extension of these methods to systems of 
nonlinear hyperbolic conservation laws. In Section 3.1, we present results for the 1D inviscid Burgers equation. Here, we assess the 
shock capture and the tygers removal of SR and SP schemes and, furthermore, we examine quantitatively the numerical convergence 
of the novel spectral approximations to the exact solution. In Section 3.2, we present an exhaustive report on how the choice of 
initial conditions can affect the choice of optimal parameters for non-dealiased spectral schemes. In Section 3.3, we use SR schemes 
to model the solution of the 2 × 2 system of 1D shallow water equations. We perform tests using two initial conditions for this model 
— namely, the hump of water and the dam break. In Section 3.4, we present analogous results using Chebyshev spectral relaxation 
schemes for the 3 × 3 system of 1D compressible Euler equations on a non-periodic domain. Here, we use an array of challenging 
Riemann problems to test the convergence and stability of SR approximations. We pay particular attention to the implementation of 
boundary conditions using the characteristic compatibility methods (CCM). In Section 3.5, we discuss SR methods for singular flows 
in the 1D wall approximation of the 3D-axisymmetric wall-bounded incompressible Euler equation. We compare the time-decay of 
the analyticity-strip width 𝛿(𝑡) obtained using PPS and SR schemes. Finally, we summarise our findings and draw attention to the 
scope and future directions of our study in Section 4.

There are two appendices to this article. In Appendix A, we profile the kernels employed in SR and SP schemes. In Appendix B, we 
give an accessible discussion of the characteristic boundary conditions for the 1D compressible Euler equations. For the 1D shallow 
water and 1D compressible Euler equations, the reference solutions are derived from well-tested and standard open-source libraries 
such as CLAWPACK [81] (for high-resolution finite-volume approximations) and HyPar [82] (for high-order finite-difference methods).

2. Numerical methods

In this section, we discuss the pure pseudospectral method and its modifications, namely, the spectral relaxation and spectral 
purging methods, in that order. First, we describe the implementation of these methods for the 1D inviscid Burgers equation with 
periodic boundary conditions, as formulated by [1]. We then describe our notation for the extension of these schemes to systems of 
nonlinear conservation laws and non-periodic domains.

2.1. The pure pseudospectral method (PPS)

Consider the 1D inviscid Burgers equation written in the following conservative form,

𝜕𝑡𝑢(𝑥, 𝑡) + 𝜕𝑥

(
1
2𝑢

2(𝑥, 𝑡)
)
= 0, 𝑡 ∈ℝ+, 𝑥 ∈ℝ, (1a)

where 𝑢(𝑥, 𝑡) is the velocity field for which the initial data is given by 𝑢(𝑥, 𝑡 = 0) = 𝑢0(𝑥). In an 𝐿-periodic domain, we use Fourier pseu-

dospectral methods to solve Eq. (1a) over a uniform collocation grid of 𝑁𝑥 = 2𝑁 +1 points given by 𝐗𝐿 = {𝑥𝑗 = 𝑗Δ𝑥: 𝑗 = 0, 1, ..., 2𝑁}, 
where Δ𝑥 = 𝐿

2𝑁+1 . The Fourier-pseudospectral projection operator 𝑃𝑁 acts on 𝑢(𝑥, 𝑡) to give the pseudospectral approximation 𝑢𝑁 (𝑥, 𝑡)
as follows,

𝑢𝑁 (𝑥, 𝑡) ∶= 𝑃𝑁𝑢(𝑥, 𝑡) =
∑

�̂�(𝑘, 𝑡)𝑒𝑖
2𝜋
𝐿
𝑘𝑥. (1b)
4

|𝑘|≤𝑁
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Thus, the exact solution 𝑢(𝑥, 𝑡) is approximated by its projection on a finite basis of trigonometric polynomials with wavenumber 
𝑘 ∈ [−𝑁, 𝑁] ⊂ ℤ. The discrete Fourier coefficient �̂�(𝑘, 𝑡) is computed as a quadrature approximation on the collocation grid 𝐗𝐿. In 
our calculations, we use the FFTW3 [83] library for this step:

�̂�(𝑘, 𝑡) = 1
2𝑁 + 1

2𝑁∑
𝑗=0

𝑢(𝑥𝑗 , 𝑡)𝑒
−𝑖 2𝜋

𝐿
𝑘𝑥𝑗 . (1c)

Equation (1a) can be rewritten for the pseudospectral interpolant 𝑢𝑁 (𝑥, 𝑡) as

𝜕𝑡𝑢𝑁 + 𝜕𝑥(𝑃𝑁
1
2𝑢

2
𝑁
) = 0, (1d)

where the initial data is given by 𝑢𝑁 (𝑥, 0) = 𝑃𝑁𝑢0(𝑥). Equation (1d) is the Galerkin-truncated version of the full 1D Burgers equation 
in Eq. (1a).

In the pure pseudospectral scheme described above, we use 2∕3-dealiasing to mitigate the growth of aliasing errors which can 
otherwise cause the scheme to destabilise quickly. The Fourier series in Eq. (1b) is truncated up to the dealiasing cut-off wavenumber 
𝐾𝐺 = 2𝑁∕3 before computing the nonlinear term 𝑃𝑁

1
2𝑢

2
𝑁

in real space, at every time step.

We now describe the PPS scheme for the 𝑑 × 𝑑 system of 1D nonlinear hyperbolic conservation laws governing the 𝑑-component 
vector of conserved quantities 𝐪(𝑥, 𝑡) ∈ℝ𝑑 . The equations are given in the following conservative form,

𝜕𝑡𝐪+ 𝜕𝑥𝐅(𝐪(𝑥, 𝑡)) = 0; (2a)

here 𝐅(𝐪) ∈ℝ𝑑 is the flux vector for the quantity 𝐪. In the advective formulation, Eq. (2a) can be rewritten as follows,

𝜕𝑡𝐪+𝐴(𝐪) 𝜕𝑥𝐪 = 0, (2b)

where 𝐴(𝐪) = ∇𝐪𝐅 is the 𝑑 × 𝑑 Jacobian matrix. Equations (2a) and (2b) are hyperbolic at a point (q, 𝑥, 𝑡), if the matrix 𝐴(𝐪) is 
diagonalisable with real eigenvalues, at this point.

In 𝐿-periodic domains, the pseudospectral Fourier projection interpolates the component variables of 𝐪(𝑥, 𝑡), i.e., {𝑞(𝑖) ; 𝑖 =
0, 1, ..., (𝑑 − 1)} over a uniform grid of 2𝑁 + 1 points given by 𝐗𝐿 = {𝑥𝑗 = 𝑗Δ𝑥 ∶ 𝑗 = 0, 1, ..., 2𝑁} where Δ𝑥 = 𝐿

2𝑁+1 as before. We 
have the analogues of Eqs. (1b) and (1c) for the components 𝑞(𝑖) as follows:

𝑞
(𝑖)
𝑁
(𝑥, 𝑡) ∶= 𝑃𝑁𝑞

(𝑖)(𝑥, 𝑡) =
∑
|𝑘|≤𝑁 𝑞(𝑖)(𝑘, 𝑡)𝑒𝑖

2𝜋
𝐿
𝑘𝑥, (2c)

𝑞(𝑖)(𝑘, 𝑡) = 1
2𝑁 + 1

2𝑁∑
𝑗=0

𝑞(𝑖)(𝑥𝑗 , 𝑡)𝑒
−𝑖 2𝜋

𝐿
𝑘𝑥𝑗 . (2d)

The system of conservation laws in Eq. (2b) is now rewritten for the pseudospectral projection 𝐪𝑁 as

𝜕𝑡𝐪𝑁 + 𝑃𝑁 (𝐴(𝐪𝑁 ) 𝜕𝑥𝐪𝑁 ) = 0. (2e)

We use Chebyshev pseudospectral methods to solve the 1D compressible Euler flows described in Section 3.4 for non-periodic domains. 
Boundary conditions (BCs) for these flows are problem-specific and differ for the left and right boundaries. Direct implementation of 
the physical boundary conditions can quickly destabilise the spectral schemes here. We then use characteristic boundary conditions 
(CBC) which take into account the eigen-structure of the Jacobian matrix. We detail their implementation by CCM methods in 
Appendix B. However, once we implement the BCs in a mathematically consistent way, we do not need local treatment at the 
boundaries, even for the novel spectral schemes discussed below. Further details are provided in Section 3.4 and Appendix B.

2.2. The spectral relaxation method (SR)

In the spectral relaxation scheme described in [1], the pseudospectral approximation of the 1D inviscid Burgers equation in 
Eq. (1d) is modified by adding a relaxation term to the right-hand side (RHS), as written below,

𝜕𝑡𝑢𝑁 + 𝜕𝑥(𝑃𝑁
1
2𝑢

2
𝑁
) = 1

𝜏
(𝑚𝑢𝑁 − 𝑢𝑁 ). (3a)

The convolution operator defined as 𝑚𝑢𝑁 (𝑥, 𝑡) ∶=𝐾𝑚(𝑥) ∗ 𝑢𝑁 (𝑥, 𝑡) performs singular convolution of the approximate solution 𝑢𝑁
with the chosen kernel 𝐾𝑚(𝑥); this step produces a smoother approximation of 𝑢𝑁 by damping high-𝑘 modes. Then, the modified 
RHS of Eq. (3a) acts as a Bhatnagar–Gross–Krook (BGK) relaxation mechanism; it dissipates energy from the high-𝑘 modes of the 
pseudospectral approximation 𝑢𝑁 at an exponential decay rate 1∕𝜏 and forces 𝑢𝑁 to converge to the generalised “Maxwellian” 𝑚𝑢𝑁 . 
The parameter 𝑚 and the relaxation time scale 𝜏 are controlled by the parameters (𝛼, 𝛾) as defined by [1] and given by

𝑚 =𝑁𝛾, 0 < 𝛾 < 1 and 𝜏 =𝑁−𝛼, 𝛼 > 0. (3b)

Since the convolution operation on the RHS of Eq. (3a) simplifies to a product in Fourier spectral space, we rewrite the equation in 
5

Fourier space as follows,



Journal of Computational Physics 519 (2024) 113446S.S.V. Kolluru, N. Besse and R. Pandit

𝜕𝑡�̂�(𝑘, 𝑡) + 𝑖
(2𝜋
𝐿
𝑘
)
𝑃𝑁 ( 12𝑢

2
𝑁
)

⋀

(𝑘, 𝑡) = 1
𝜏

[
𝐾𝑚(𝑘) − 1

]
�̂�(𝑘, 𝑡), (3c)

where 𝑃𝑁 ( 12𝑢
2
𝑁
)

⋀

(𝑘, 𝑡) corresponds to the discrete Fourier coefficient of the nonlinear term as defined in Eq. (1c) and 𝐾𝑚(𝑘) is the 
discrete Fourier coefficient of the kernel 𝐾𝑚(𝑥). Initial data for Eq. (3a) is given by 𝑢𝑁 (𝑥, 0) = 𝑃𝑁𝑢0(𝑥), the same as in the PPS method.

In the present work, we use, among other kernels, the positive kernels of Fejér–Korovkin, Jackson and Jackson–de La Vallée 
Poussin (see Appendix A and also [84] for a detailed discussion of all filters used here) for which it has been proved in [1] that the 
approximate solution 𝑢𝑁 converges strongly in 𝐿2, as 𝑁 →∞, to the entropic weak solution of the 1D inviscid Burgers equation.

For the system of nonlinear hyperbolic conservation laws given in Eqs. (2), the relaxation operation is applied to the RHS of all the 
component equations. The chosen kernel 𝐾𝑚(𝑥) is used with the same parameter set (𝛼, 𝛾) for all the component equations. SR schemes 
can be extended in a straight-forward way to Chebyshev-pseudospectral approximations for non-periodic domains. We present the 
results of Chebyshev SR approximations for the 1D compressible Euler equations in Section 3.4; here, we note that application of the 
relaxation kernel at the sensitive boundary points goes through smoothly within the spectral relaxation scheme.

Furthermore, we need not use 2∕3-dealiasing or other dealiasing strategies for the spectral relaxation and spectral purging schemes. 
For all the test problems discussed in this article, a suitable choice of the parameters (𝛼, 𝛾) suffices to control aliasing errors and prevent 
destabilisation of the new schemes. We explore the effect of dealiasing on SR and SP schemes in Section 3.2 in detail.

2.3. The spectral purging method (SP)

In the spectral purging scheme described in [1], the pseudospectral approximation 𝑢𝑁 is mollified with the kernel 𝐾𝑚(𝑥) at discrete 
times, separated by a time interval 𝜏 . The definitions of the parameters 𝑚 and 𝜏 for the spectral purging method are the same as 
described for the spectral relaxation method in Eq. (3b); we continue our usage of the parameters (𝛼, 𝛾) for SP methods. Consider 
the discretisation of the time interval 𝑡 ∈ [0, 𝑇 ] into intervals of length 𝜏 , using the index 𝑛 = 0, 1, ..., 𝑀 , where 𝜏 = 𝑇 ∕(𝑀 + 1). We 
use the notation 1]𝑛𝜏,(𝑛+1)𝜏](𝑡) for the indicator function over the subset 𝑡 ∈]𝑛𝜏, (𝑛+ 1)𝜏]. Then, the spectral purging approximation is 
given by

𝑢𝑁 (𝑥, 𝑡) =
𝑀∑
𝑛=0

𝑢𝑛
𝑁
(𝑥, 𝑡)1]𝑛𝜏,(𝑛+1)𝜏](𝑡). (4a)

Here, 𝑢𝑛
𝑁
(𝑥, 𝑡) is the exact solution of the following spectral purging equation:

𝜕𝑡𝑢
𝑛
𝑁
+ 𝜕𝑥(𝑃𝑁

1
2 (𝑢

𝑛
𝑁
)2) = 0, ∀𝑡 ∈]𝑛𝜏, (𝑛+ 1)𝜏], (4b)

𝑢𝑛
𝑁
(𝑥, 𝑛𝜏) =𝑚𝑢

𝑛−1
𝑁

(𝑥, 𝑛𝜏). (4c)

The convolution operator 𝑚(⋅) = 𝐾𝑚 ∗ (⋅) performs the singular convolution integral discussed in the previous section. Here, 
𝑢−1
𝑁
(𝑥, 𝑡 = 0) ∶= 𝑢𝑁 (𝑥, 𝑡 = 0) is the pseudospectral approximation of the initial condition 𝑢0(𝑥). The pseudospectral approximation 

of 𝑢𝑛
𝑁
(𝑥, 𝑡) is given by

𝑢𝑛
𝑁
(𝑥, 𝑡) =

∑
|𝑘|≤𝑁 �̂�𝑛(𝑘, 𝑡)𝑒𝑖

2𝜋
𝐿
𝑘𝑥, ∀𝑡 ∈]𝑛𝜏, (𝑛+ 1)𝜏], (4d)

where the discrete Fourier coefficients �̂�𝑛(𝑘, 𝑡) are computed as in Eq. (1c). Thus, the dissipative mechanism in the SP method is 
discontinuous-in-time unlike in the SR method, where the dissipation is enforced continuously-in-time via the penalty term on the 
right-hand side of Eq. (3a). We do not use 2∕3-dealiasing strategies for the SP method, as elaborated in the previous section for SR 
methods.

For systems of nonlinear conservation laws, we apply the purging operation to each component variable 𝑞(𝑖) ∈ 𝐪(𝑥, 𝑡) of Eq. (2). 
The choice of kernel 𝐾𝑚(𝑥) and parameters (𝛼, 𝛾) remain the same for purging all the component variables of 𝐪.

3. Results

In this Section, we present the results of several numerical experiments carried out using the novel spectral schemes described 
in Sections 2.2 and 2.3. We apply the SR and SP schemes to a collection of standard benchmark problems for nonlinear hyperbolic 
conservation laws, summarised here: (𝑎) 1D inviscid Burgers equation with a single-mode initial condition in a periodic domain in 
Section 3.1, (𝑏) 1D shallow water equations with water-hump and dam-break initial configurations in Section 3.3, (𝑐) 1D compressible 
Euler equations with Riemann initial configurations for the Sod-shock tube, the Lax-shock tube, the shock-entropy interaction (Shu–

Osher problem), and the blast-waves interaction in Section 3.4.

We examine the convergence of the SR and SP approximations to the exact solutions when they are available. Otherwise, we 
perform visual convergence tests using high-resolution approximations from readily available non-spectral schemes as reference so-

lutions. We use the Godunov finite-volume schemes from CLAWPACK (Conservation law package [81]) for the 1D shallow water 
problems as well as the blast-waves interaction problem for the 1D compressible Euler equations. For the remaining problems in 
Section 3.4, we use finite-difference schemes from HyPar (Hyperbolic-Parabolic Partial Differential Equations Solver [82]) In Sec-

tion 3.2, we discuss the variation in the growth of aliasing instabilities depending on the choice of initial data for the 1D-periodic 
6

inviscid Burgers equation. The impact of this variation on the SR, SP, and SVV schemes is then discussed in detail. Finally, we apply 
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Fig. 1. Plots vs. 𝑥 of the velocity field 𝑢(𝑥, 𝑡) at increasing times from panels (𝑎) − (𝑐). The exact solution (black line) and the 2∕3-dealiased PPS approximation on 
𝑁𝑥 = 615 points (grey line) are superposed for comparison. We see the development of Gibbs oscillations near the shock and tygers in the smooth parts of the field 
which experience a positive strain. In panel (𝑐), we see that the tygers have spread throughout the domain.

the SR scheme to the solution of the 1D wall approximation of the 3D-axisymmetric wall-bounded incompressible Euler equation in 
Section 3.5. We compare the estimate of the width of the analyticity-strip 𝛿(𝑡) obtained using SR approximations at a lower resolution 
and PPS approximations at a higher resolution. We conclude that SR schemes allow for reliable extraction of 𝛿(𝑡) for much longer 
times than the 2∕3-dealiased PPS schemes. Therefore, SR schemes can remedy the constraints on spectral schemes employed for 
tracking finite-time singularities.

We use the 4th-order Runge–Kutta scheme for time integration of the finite-dimensional ODEs resulting from spatial discretisation 
using PPS schemes of Section 2.1, SR schemes of Section 2.2, and SP schemes of Section 2.3. The choice of time step Δ𝑡 is such that 
further decrease of Δ𝑡 does not increase the accuracy of the approximation; therefore, the limit in accuracy is attributed solely to the 
spatial discretisation scheme.

3.1. 1D inviscid Burgers equation

We begin our studies with the 1D inviscid Burgers equation (also in Eq. (1)) with the initial data given below:

𝜕𝑡𝑢+ 𝜕𝑥

(
1
2𝑢

2
)
= 0, 𝑡 ∈ℝ+, 𝑥 ∈ [0,1], (5a)

𝑢(𝑥, 𝑡 = 0) = sin (2𝜋𝑥) . (5b)

For the single-mode initial condition in Eq. (5b), this model develops a finite-time singularity at time 𝑡∗ = 1∕2𝜋, which manifests as a 
shock wave. Prior to shock formation, we have a unique classical solution for the velocity field which remains smooth and conserves 
energy, i.e., ||𝑢(⋅, 𝑡)||2

𝐿2 does not change with time. Once shock waves are formed, uniqueness and regularity properties are lost and 
we have to consider solutions in a weak distributional sense. An entropy argument can then be used to pick a physically meaningful 
weak solution and to restore uniqueness. This entropic weak solution is known to be dissipative i.e., ||𝑢(⋅, 𝑡)||2

𝐿2 decays in time [85].

Since spectral approximations for inviscid PDEs are conservative, they cannot model the entropic solution which dissipates energy. 
In Fig. 1, we plot the 2∕3-dealiased PPS approximation of Eqs. (5) for a spatial resolution of 𝑁𝑥 = 2𝑁 +1 = 615 at different times. We 
also plot the exact solution (black line) for comparison. In panel (𝑎), the PPS approximation converges to the exact entropic solution 
which is still smooth at early times. The finite-time singularity occurs at time 𝑡∗ = 1∕2𝜋 ≃ 0.159 and develops as a shock at 𝑥∗ = 0.5. In 
panel (𝑏) of Fig. 1, we see the development of Gibbs oscillations around the shock as the system has just crossed the singularity time. 
We also observe tygers [55] as a rapidly-growing envelope of oscillations at the edges of the domain (smooth part of the solution). 
Note that the oscillations occur at the Galerkin truncation wavelength 𝜆𝐺 = 2𝜋∕𝐾𝐺 , where 𝐾𝐺 is the dealiasing cut-off. At long times, 
shown in panel (𝑐), the system is thermalising and the PPS approximation has almost settled down to a Gaussian noise [59].

We now discuss the SR and SP approximations to solve Eqs. (5). A crucial step in implementing the new schemes is the choice of 
parameters (𝛼, 𝛾) defined in Eq. (3b). In panels (𝑎) and (𝑏) of Fig. 2, we show SR and SP approximations of the velocity field using 
the Fejér–Korovkin kernel, respectively, at 𝑡 = 0.2. The different keys in the legend represent different values of 𝛼; we set 𝛾 = 0.99. 
Approximations obtained with higher values of 𝛼 suffer more dissipation and are overdamped near the shock. On the other hand, 
approximations obtained using lower values of 𝛼 suffer from persistent tyger-like structures since the damping is insufficient. We 
note that the novel spectral approximations do not have oscillatory behaviour near the shock, as seen in the zoomed insets in panels 
(𝑎) − (𝑏) of Fig. 2.

Hereafter, we use the abbreviation SR-FeKo to denote the spectral relaxation scheme using the Fejér–Korovkin kernel, and SP-FeKo 
for the spectral purging schemes using the same kernel.

From visual inspection of Fig. 2, we can guess the optimal parameter values for this problem as (𝛼 ≃ 0.7, 𝛾 = 0.99) for both SR-FeKo 
and SP-FeKo schemes. To arrive at the best parameter set, we perform a more exhaustive parameter-search in (𝛼, 𝛾) space; we seek 
to minimise (𝑎) the time-integrated 𝐿2 error from 𝑡 = 0 to 𝑡 = 9.9 of the SR and SP approximations and (𝑏) the maximum 𝐿2 error 
over the same time interval. The best parameter sets obtained via this minimisation routine are given by: (𝛼 = 0.7, 𝛾 = 0.99) for the 
SR-FeKo scheme and (𝛼 = 0.65, 𝛾 = 0.99) for the SP-FeKo scheme, for a spatial resolution of 𝑁𝑥 = 615 points. In Fig. 3, we plot the 
SR-FeKo and SP-FeKo approximations obtained using the best parameter sets above, for three representative times. At early times 
𝑡 = 0.07 shown in panel (𝑎), we have spectral convergence: PPS, SR-FeKo and SP-FeKo approximations represent the exact solution 
7

accurately. Note that the SR and SP approximations are not over-dissipated. In panel (𝑏), with the shock formation at 𝑡 = 0.2, we see 
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Fig. 2. Plots vs. 𝑥 of the velocity field 𝑢(𝑥, 𝑡) obtained by using (𝑎) spectral relaxation (SR) and (𝑏) spectral purging (SP) schemes with the Fejér–Korovkin kernel. The 
value of 𝛼 used is given in the legend; we set 𝛾 = 0.99. The plots are shown for time 𝑡 = 0.2 after the shock formation at 𝑡∗ ≃ 0.159. We compare these approximations 
with the exact solution (black line) and the 2∕3-dealiased PPS solution (light grey line). The insets in each panel are used to zoom into the region of the shock.

Fig. 3. Plots vs. 𝑥 of the velocity field 𝑢 approximated using the best SR-FeKo (orange crosses) and SP-FeKo (blue circles) schemes. The parameter sets are, for SR-FeKo: 
(𝛼 = 0.7, 𝛾 = 0.99) and for SP-FeKo: (𝛼 = 0.65, 𝛾 = 0.99). The exact solution (black line) and the 2∕3-dealiased PPS solution (grey line) are plotted for comparison. We 
use a spatial resolution of 𝑁𝑥 = 615 for all the runs shown here. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this 
article.)

the development of tygers in the PPS approximation. SR and SP approximations closely follow the shock (black line) and, furthermore, 
respect monotonicity (seen in the zoomed inset axis). We notice a difference far from the shock: the SR-FeKo scheme has successfully 
damped the tyger structures, thus giving an approximation that is very close to the exact solution. This is not the case for the SP-FeKo 
approximation, which still displays attenuated tyger-like structures. Since SP approximations are discontinuous-in-time, they can 
only approximate the exact solution well at discrete times. For long-time behaviour, in panel (𝑐), the SR and SP approximations are 
indistinguishable from the true solution. At this time, the PPS approximation is noisy and is moving towards thermalisation.

Reference [1] shows that the SR and SP approximations, for a suitable choice of the parameters (𝛼, 𝛾), converge in the 𝐿2 norm 
to the exact entropic solution, as 𝑁 →∞. We perform numerical convergence analysis of the SR-FeKo approximation for the best 
parameter set (𝛼 = 0.7, 𝛾 = 0.99) and present the results in Table 1. We evaluate the error w.r.t. the exact entropic solution for 8 
well-separated resolutions, at 3 different times; the order of the method is then calculated from the error of adjacent resolutions. 
As concluded by [1], SR-FeKo approximations indeed converge, in both norms, to the entropic solution. The asymptotic order of 
convergence is the same for 𝐿1 and 𝐿2 errors at early times (see column 2 of Table 1), but differs at later times (see columns 3 and 
4 of Table 1). We attribute this difference to the increased sensitivity of the 𝐿2 error to deviations. At early times 𝑡 = 0.07, we have 
polynomial convergence of the method with an asymptotic order of ≃ 1.28 using the 𝐿1 error, and ≃ 1.27 for the 𝐿2 error. For the 
times following the shock formation, we retain an order ≃ 0.9 for the 𝐿1 error, and ≃ 0.78 for the 𝐿2 error (column 4, Table 1). The 
order of convergence of the SR scheme is given by the scaling of the RHS of Eq. (3) with 𝑁 as 1

𝜏
( 1
𝑚
)2 ≃𝑁−(2𝛾−𝛼); for our choice of 

𝛾 ≃ 1, we have 𝑁−(2−𝛼). The scaling is confirmed in Fig. 4, where we plot the asymptotic order vs. the value of 𝛼 used for SR-FeKo 
approximations. We set 𝛾 = 0.99 for all the simulations performed here. Before the shock formation, since the solution is analytic 
in space, the order of convergence of the scheme is not limited by the spatial regularity of the exact solution but only by how we 
approximate it. But after the shock formation, since the solution 𝑢(⋅, 𝑡) ∈ BV𝑥 (the space of functions with bounded variation in space), 
the order of convergence is now limited by the spatial regularity of the solution 𝑢; this order is now bounded above by 1.

We now use the SR scheme with the de La Vallée Poussin kernel (SR-DlVP) which is a non-positive high-order approximation kernel. 
The functional form and parameters for this filter are given in Appendix A. We deduce the optimal parameters (𝛼 = 0.89, 𝛾 = 0.9)
for SR-DlVP by the same minimisation scheme, as described earlier for SR-FeKo. In Fig. 5, we plot the best SR-FeKo approximation 
with the best SR-DlVP approximation at different times; we set 𝑁𝑥 = 615. We also perform convergence analysis for the best SR-DlVP 
approximation using the 𝐿1 and 𝐿2 norms, as shown in Table 2 (rows 2 and 3 respectively). For times before the shock, the SR-DlVP 
shows spectral convergence (see column 2 of Table 2); the difference is not appreciable in panel (𝑎) of Fig. 5. However, just after the 
shock formation, in panel (𝑏) of Fig. 5, SR-DlVP approximation shows oscillations near the shock with a small, bounded amplitude 
which are absent for the SR-FeKo approximation. Similar oscillations were observed for the SVV method by [54]. After the shock 
8

formation, SR-FeKo and SR-DlVP schemes have the same rate of convergence in terms of the 𝐿1 norm, for approximating shock 
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Table 1

Convergence analysis for the SR-FeKo approximations using (𝛼 = 0.7, 𝛾 = 0.99) at three rep-

resentative times before and after the shock formation 𝑡 = 0.07, 0.2 and 2.0. Here, the second 
row gives convergence analysis based on the 𝐿1 error; and the third row shows the 𝐿2 error. 
All sets of runs do not employ 2∕3-dealiasing.

SR 𝑡 = 0.07 𝑡 = 0.20 𝑡 = 2.00

FeKo 𝑁𝑥 Error Order Error Order Error Order

𝐿1 error

39 4.5 ⋅ 10−3 3.8 ⋅ 10−2 9.0 ⋅ 10−3
65 2.6 ⋅ 10−3 1.11 2.6 ⋅ 10−2 0.78 6.3 ⋅ 10−3 0.71

123 1.2 ⋅ 10−3 1.26 1.6 ⋅ 10−2 0.72 3.3 ⋅ 10−3 1.03

205 6.1 ⋅ 10−4 1.25 1.1 ⋅ 10−2 0.74 1.9 ⋅ 10−3 1.06

615 1.5 ⋅ 10−4 1.26 4.6 ⋅ 10−3 0.81 6.5 ⋅ 10−4 0.97

1599 4.5 ⋅ 10−5 1.28 2.0 ⋅ 10−3 0.87 2.8 ⋅ 10−4 0.90

2665 2.4 ⋅ 10−5 1.28 1.3 ⋅ 10−3 0.90 1.8 ⋅ 10−4 0.90

7995 5.8 ⋅ 10−6 1.28 4.6 ⋅ 10−4 0.91 6.5 ⋅ 10−5 0.90

𝐿2 error

39 5.4 ⋅ 10−3 4.9 ⋅ 10−2 1.9 ⋅ 10−2
65 3.1 ⋅ 10−3 1.10 3.3 ⋅ 10−2 0.74 1.4 ⋅ 10−2 0.59

123 1.4 ⋅ 10−3 1.25 2.2 ⋅ 10−2 0.66 9.0 ⋅ 10−3 0.73

205 7.4 ⋅ 10−4 1.24 1.6 ⋅ 10−2 0.61 6.1 ⋅ 10−3 0.75

615 1.8 ⋅ 10−4 1.25 7.8 ⋅ 10−3 0.67 2.6 ⋅ 10−3 0.76

1599 5.5 ⋅ 10−5 1.27 3.7 ⋅ 10−3 0.76 1.3 ⋅ 10−3 0.78

2665 2.8 ⋅ 10−5 1.27 2.5 ⋅ 10−3 0.79 8.4 ⋅ 10−4 0.78

7995 7.0 ⋅ 10−6 1.27 1.0 ⋅ 10−3 0.81 3.6 ⋅ 10−4 0.78

Fig. 4. Plot vs. 𝛼 of the order of convergence calculated from 𝐿∞-errors of the SR-FeKo approximation with (𝛼, 𝛾 = 0.99) at early time 𝑡 = 0.07 when the solution is 
still smooth.

solutions which have only BV smoothness in space. If we use the 𝐿2 norm, the order of convergence for SR-FeKo (0.8) is higher than 
that for the SR-DlVP (0.5) (see columns 3-4 of Tables 1-2). This results may seem surprising knowing that the de La Vallée Poussin 
kernel is a high-order approximation kernel, whereas the Fejér–Korovkin kernel is a low-order one. In fact, as it is emphasised in [86], 
“The order of accuracy is not everything”; the faster global convergence of SR-FeKo, in 𝐿2 norm, can be traced back to the Fejér–

Korovkin kernel which retains the monotonicity and maximum-principle properties of the solution in the approximate one. Since this 
is not true for the de La Vallée Poussin kernel, we see bounded oscillations and under-shoots or over-shoots of the approximation near 
discontinuities. Thus, high-order approximations as the sole criterion for designing accurate numerical schemes can be misleading. 
Even so, if we compute the order of convergence only in the smooth regions of the solution and exclude the discontinuity, then we 
expect the SR-DlVP schemes to perform better. We conclude that SR approximations, which use the high-order de La Vallée Poussin 
kernel, yield better convergence when the solution is smooth, but only limited convergence for the shock capture compared to the 
low-order Fejér–Korovkin kernel.

However, the choice of kernel is special and depends on the properties of the problem at hand. For problems where we do not 
expect monotonicity, such as the Shu–Osher problem in Section 3.4, we find that the SR-DlVP approximation is desirable and allows 
us to capture shocks and fine structures in the solutions.

For SR and SP implementations of the 1D inviscid Burgers equation, the choices of the kernel 𝐾𝑚(𝑥) used in the convolution 
operator 𝑚 and governing parameters (𝛼, 𝛾) are guided by the convergence analysis of [1]. In panel (𝑎) of Fig. 6, we show SR 
approximations obtained by using different positive kernels, for the optimal parameter choice (𝛼 = 0.7, 𝛾 = 0.99). In panel (𝑏) of the 
same figure, we show the corresponding SP approximations with the optimal parameter set (𝛼 = 0.65, 𝛾 = 0.99). There is minimal 
variation across different choices of the allowed filters; a closer examination near the shock reveals that Fejér–Korovkin kernel gives a 
slightly better result compared to the Jackson and Jackson–de La Vallé Poussin kernels (see zoomed insets). We present the functional 
forms of these filters in the subsection on positive kernels in Appendix A.

In Fig. 7, we compare the best SR-FeKo and SP-FeKo approximations with the best SVV approximation. SVV, SR and SP meth-

ods approximate the exact solution well far from the shock; however, near the shock in panels (𝑏, 𝑐) we see that small Gibbs-like 
oscillations still persist in the SVV approximation. The SR-FeKo and SP-FeKo methods preserve the monotonicity of the solution and 
9

approximate the shock very closely. SP-FeKo approximations still display persistent tygers in the smooth regions of the flow, due 



Journal of Computational Physics 519 (2024) 113446S.S.V. Kolluru, N. Besse and R. Pandit

Fig. 5. Plots vs. 𝑥 of the velocity field 𝑢 obtained by using SR-FeKo for (𝛼 = 0.7, 𝛾 = 0.99) (blue crosses) and SR-DlVP (with the de La Vallée Poussin filter) for 
(𝛼 = 0.89, 𝛾 = 0.9) (orange plusses) at different representative times in panels (𝑎)-(𝑐) before and after the shock formation. We compare these approximations with the 
exact solution (black line) and the 2∕3-dealiased PPS solution (light grey line). The zoomed insets in each panel show Gibbs-like oscillations in SR-DlVP approximation. 
The spatial resolution is 𝑁𝑥 = 615.

Table 2

Convergence analysis for the SR-DlVP approximations using (𝛼 = 0.89, 𝛾 = 0.9) at three rep-

resentative times before and after the shock formation 𝑡 = 0.07, 0.2 and 2.0. Here, the second 
row gives convergence analysis based on the 𝐿1 error and the third row, for the 𝐿2 error. All 
sets of runs do not employ 2∕3-dealiasing.

SR 𝑡 = 0.07 𝑡 = 0.20 𝑡 = 2.00

DlVP 𝑁𝑥 Error Order Error Order Error Order

𝐿1 error

39 1.2 ⋅ 10−5 3.7 ⋅ 10−2 1.0 ⋅ 10−2
65 3.8 ⋅ 10−7 6.82 2.4 ⋅ 10−2 0.85 5.7 ⋅ 10−3 1.13
123 6.9 ⋅ 10−10 9.89 1.4 ⋅ 10−2 0.83 3.2 ⋅ 10−3 0.90
205 2.8 ⋅ 10−13 15.28 9.0 ⋅ 10−3 0.88 1.9 ⋅ 10−3 1.03
615 5.0 ⋅ 10−15 3.66 3.2 ⋅ 10−3 0.93 6.3 ⋅ 10−4 0.99
1599 4.1 ⋅ 10−15 0.21 1.3 ⋅ 10−3 0.96 2.6 ⋅ 10−4 0.92
2665 4.0 ⋅ 10−15 0.05 7.9 ⋅ 10−4 0.95 1.6 ⋅ 10−4 0.91
7995 1.0 ⋅ 10−14 −0.83 2.7 ⋅ 10−4 0.95 6.0 ⋅ 10−5 0.93

𝐿2 error

39 1.6 ⋅ 10−5 4.1 ⋅ 10−2 1.5 ⋅ 10−2
65 5.7 ⋅ 10−7 6.54 2.7 ⋅ 10−2 0.76 1.1 ⋅ 10−2 0.65
123 1.1 ⋅ 10−9 9.88 1.7 ⋅ 10−2 0.70 7.6 ⋅ 10−3 0.50
205 4.4 ⋅ 10−13 15.23 1.2 ⋅ 10−2 0.71 6.0 ⋅ 10−3 0.46
615 7.0 ⋅ 10−15 3.76 5.7 ⋅ 10−3 0.70 3.6 ⋅ 10−3 0.44
1599 5.2 ⋅ 10−15 0.31 3.1 ⋅ 10−3 0.60 2.4 ⋅ 10−3 0.44
2665 5.7 ⋅ 10−15 −0.17 2.4 ⋅ 10−3 0.54 1.9 ⋅ 10−3 0.44
7995 1.1 ⋅ 10−14 −0.59 1.3 ⋅ 10−3 0.50 1.1 ⋅ 10−3 0.44

Fig. 6. Plots vs. 𝑥 of the velocity field 𝑢 obtained by using (𝑎) spectral relaxation and (𝑏) spectral purging methods with different kernels listed in the legend for 
the optimal parameter set of (𝛼 = 0.7, 𝛾 = 0.99) and (𝛼 = 0.65, 𝛾 = 0.99) respectively, at time 𝑡 = 0.2, after the shock formation around 𝑡∗ ∼ 0.159. We compare these 
approximations with the exact solution (black line). The zoomed insets in each panel show that the behaviour of the approximated solution is the same across these 
kernel choices. We use 𝑁𝑥 = 615.

to their discontinuous-in-time nature. In order to simplify the analysis, we choose to focus our study on the continuous-in-time SR 
approximations.

In Fig. 8, we compare the SR-FeKo approximation with SR approximations that were obtained for different kernels 𝐾𝑚(𝑥) (used 
in 𝑚𝑢𝑁 in Eq. (3a)) that are prominent in the literature. In particular, we use the adaptive filters given by [41] (TT05), the 
smoothing functions used by [10] (MMO78), and the Gaussian regularised Shannon kernel of [43] (RSK). SR-FeKo gives the best 
visual convergence to the exact solution (see the zoomed inset in panels (𝑏, 𝑐)) The approximations become more inaccurate as we 
10

move from SR-TT05, to SR-MMO78, and SR-RSK (in that order).
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Fig. 7. Plots vs. 𝑥 of the velocity field 𝑢 obtained by using the best SR-FeKo (𝛼 = 0.7, 𝛾 = 0.99) (pink circles) and SP-FeKo (𝛼 = 0.65, 𝛾 = 0.99) (orange crosses) 
approximations, compared with the widely used SVV approximations with (𝜖 =𝑁−1, 𝑀 = 2

√
𝑁) (blue plusses), where 𝑁𝑥 = 2𝑁 +1 = 615. We describe the SVV filter 

in Appendix A.

Fig. 8. Plots vs. 𝑥 of the velocity field 𝑢 obtained by using SR-FeKo (𝛼 = 0.70, 𝛾 = 0.99) scheme, compared with the spectral relaxation scheme implemented using 
other filters which are not positive. We describe all filters used here in the Appendix A. We use 𝑁𝑥 = 615.

3.2. Role of initial conditions in the choice of optimal 𝛼

In previous and subsequent sections, we use the novel spectral schemes without a dealiasing mechanism as the dissipation induced 
by these schemes usually suffices to control mild aliasing instabilities, so we can circumvent the cost of dealiasing for Eqs. (5). In this 
section, we demonstrate that, for a given PDE, different initial conditions can lead to different growth-rates for aliasing errors. Thus, 
the choice of kernels and the parameters (𝛼, 𝛾) cannot be universal; these have to be obtained through careful parameter exploration 
for every initial-boundary value problem.

We investigate a shifted single-mode initial condition with SR-FeKo scheme; the implementation is as discussed in Section 2. For 
clarity, we label the old and new initial conditions as below:

IC0: 𝑢0(𝑥) = sin(2𝜋𝑥) (6)

IC1: 𝑢0(𝑥) = sin(2𝜋𝑥− 𝜋∕2) (7)

where, we have periodic boundaries for 𝑥 ∈ [0, 1].
In Fig. 9, we plot the non-dealiased (plain) SR-FeKo approximation for initial data IC1 with (𝛼 = 0.97, 𝛾 = 0.98). Right after the 

shock formation, in panel (𝑏), the plain SR-FeKo approximation (pink circles) develops aliasing errors in the smooth region which 
eventually grow in time and destabilise the scheme; at long times, in panel (𝑐), the solution has numerically blown up and is no 
longer visible in the range of the plot. Thus, SR-FeKo is unstable for IC1 with 𝛼 < 1; this is unlike what we report for IC0 in the 
previous section: SR-FeKo provides a stable and convergent approximation for IC0 with values of 𝛼 in [0.7, 2[ and 𝛾 ∈ [0.9, 1); for 
𝛼 > 1, the scheme is over-dissipative but still converges. If we allow 𝛼 > 1 for IC1, SR-FeKo yields a convergent approximation for 
(𝛼 = 1.18, 𝛾 = 0.99). The corresponding convergence analysis is given in Table 3. In Fig. 9, the plain SR-FeKo approximation (blue 
plusses), with the new optimal parameter set, shows visual convergence to the exact solution and does not blow-up at long times. 
Convergence analysis, performed in [1], proves that, for a positive kernel 𝐾𝑚(𝑥) and parameters (𝛼, 𝛾) such that 𝛼∕2 < 𝛾 < 1 and 
1 < 𝛼 < 2, there is convergence in 𝐿2 norm of the approximate solution 𝑢𝑁 to the exact entropic solution of the 1D inviscid Burgers 
equation as 𝑁 →∞. In fact, the condition 𝛼 > 1 is a sufficient condition for the aliasing error to be controlled or dominated by the 
dissipation induced by the relaxation term. This is confirmed by Fig. 9; for this IC, 𝛼 > 1 is optimal for obtaining a convergent SR 
approximation without dealiasing; but this does not mean that for 𝛼 < 1 there is never any convergence for the SR method without 
dealiasing. As we observe in Fig. 9, it can depend on the initial condition. Indeed, particular initial conditions (like IC0) may exist 
for which supplementary conditions such as compensation mechanisms can make the SR method converge for a wider range of the 
parameter 𝛼. The additional compensation mechanisms are not taken into account by the general convergence analysis which covers 
all initial conditions; they deserve to be studied in greater detail from a mathematical point of view.

To expose the role of ICs in producing aliasing errors of varying strengths, we look at the plain PPS approximations for both IC0
and IC1. In panel (𝑎) of Fig. 10, we show the plain PPS for IC0 in blue, and IC1 in orange, at 𝑡 = 0.17 after the shock formation. 
11

The growth of aliasing error at the edge of the domain is very mild in IC0. For IC1, the errors accumulate around 𝑥 ≃ 0.25 and grow 
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Fig. 9. Plots vs. 𝑥 of the velocity field 𝑢 at three representative times, where the approximations were obtained using SR-FeKo and no dealiasing (plain) for (𝛼 =
0.97, 𝛾 = 0.98) (pink circles), (𝛼 = 1.18, 𝛾 = 0.99) (blue plusses) compared with SR-FeKo-deal implemented with 2∕3-dealiasing for (𝛼 = 0.97, 𝛾 = 0.98) (orange crosses). 
We show the exact solution (black line) for comparison. For stability of the plain SR approximations, we need values of 𝛼 that are higher than the ones used with the 
dealiased approximations for this initial condition. We use 𝑁𝑥 = 615.

Fig. 10. Plots vs. 𝑥 of the velocity field 𝑢(𝑥, 𝑡) obtained by using PPS schemes for the initial conditions IC0 and IC1 at time 𝑡 = 0.17 just after the time of shock 
formation for this model. In panel (𝑎), dealiasing is not used and aliasing errors build at different rates for the different ICs. In panel (𝑏) we use 2∕3-dealiasing: for

IC0, the PPS approximation becomes worse and develops tygers. For IC1, the solution is more well-behaved and the aliasing instability is bypassed. We use 𝑁𝑥 = 615
for all these runs.

Fig. 11. Plots vs. 𝑥 of the velocity field 𝑢(𝑥, 𝑡) for three representative times, where we use the SVV method with parameters (𝜖, 𝑀) listed in the legend for different 
initial configurations. We do not use 2∕3-dealiasing in these runs. The spatial resolution is 𝑁𝑥 = 615.

to destabilise the PPS scheme before 𝑡 = 0.2. In panel (𝑏) of the same figure, we repeat PPS for both ICs with 2∕3-dealiasing. Now, 
the results are uniform across the ICs and tygers emerge in both cases. Thus, 2∕3-dealiasing plays an important role in stabilising 
and homogenising the Fourier pseudospectral scheme. However, for IC0, dealiasing is expensive and disadvantageous; the dealiased 
PPS approximation (blue line in panel (𝑏)) is far-less accurate than the non-dealiased one (blue line in panel (𝑎)). For IC1, dealiasing 
improves the stability and accuracy of the PPS approximation (compare orange lines for plain in panel (𝑎) and dealiased in (𝑏)). 
When we use 2∕3-dealiasing in SR-FeKo for IC1, the stability and convergence of the scheme is ameliorated. In Table 4, we present 
numerical convergence analysis for the dealiased SR-FeKo approximation for (𝛼 = 0.97, 𝛾 = 0.98). Convergence is improved compared 
to the plain SR-FeKo approximation for (𝛼 = 1.18, 𝛾 = 0.99) discussed above (see Table 3). Furthermore, in Fig. 9, stability is restored 
for the dealiased SR-FeKo approximation (orange crosses) for the same parameters as the non-dealiased one (pink circles). Dealiased 
SR schemes require a smaller value of 𝛼 to achieve stability, when compared to their non-dealiased counterparts. Low values of 
𝛼 imply less diffusion and higher order of convergence of the scheme since the order of convergence ∼ (2 − 𝛼) (see Fig. 4). Thus, 
dealiasing makes it possible to obtain a stable SR scheme that is less diffusive and shows a higher rate of convergence.

This effect is also observed for SVV schemes which circumvent dealiasing as well. In Fig. 11, SVV approximation of IC0 (pink 
circles) is stable and convergent for (𝜖 =𝑁−1, 𝑀 = 2𝑁1∕2). When we use the same parameters for IC1 (orange crosses), the resulting 
SVV approximation destabilises. The more dissipative choice of (𝜖 = 0.25𝑁−1∕4, 𝑀 =𝑁1∕4) is optimal for this case (shown as blue 
12

plusses) and then restores the stability and convergence of the scheme.
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Table 3

Convergence analysis for SR-FeKo approximations (for IC1) using (𝛼 = 1.18, 𝛾 = 0.99) at three 
representative times, 𝑡 = 0.07, 0.2 and 2.0. Here, the second row contains convergence analysis 
based on the 𝐿1 error and the third row, for the 𝐿2 error. All sets of runs do not employ 2∕3-

dealiasing.

SR 𝑡 = 0.07 𝑡 = 0.20 𝑡 = 2.00

FeKo 𝑁𝑥 Error Order Error Order Error Order

𝐿1 error

39 1.8 ⋅ 10−2 6.0 ⋅ 10−2 2.9 ⋅ 10−2
65 1.3 ⋅ 10−2 0.62 4.4 ⋅ 10−2 0.60 2.1 ⋅ 10−2 0.65
123 8.3 ⋅ 10−3 0.76 2.8 ⋅ 10−2 0.72 1.2 ⋅ 10−2 0.79
205 5.6 ⋅ 10−3 0.76 1.9 ⋅ 10−2 0.75 8.4 ⋅ 10−3 0.78
615 2.4 ⋅ 10−3 0.77 7.9 ⋅ 10−3 0.80 3.6 ⋅ 10−3 0.78
1599 1.1 ⋅ 10−3 0.80 3.5 ⋅ 10−3 0.84 1.7 ⋅ 10−3 0.80
2665 7.4 ⋅ 10−4 0.80 2.3 ⋅ 10−3 0.83 1.1 ⋅ 10−3 0.80
7995 3.1 ⋅ 10−4 0.80 9.6 ⋅ 10−4 0.81 4.6 ⋅ 10−4 0.80

𝐿2 error

39 2.2 ⋅ 10−2 1.3 ⋅ 10−1 5.9 ⋅ 10−2
65 1.6 ⋅ 10−2 0.61 1.1 ⋅ 10−1 0.33 5.0 ⋅ 10−2 0.32
123 1.0 ⋅ 10−2 0.76 8.7 ⋅ 10−2 0.42 3.9 ⋅ 10−2 0.39
205 6.8 ⋅ 10−3 0.76 6.9 ⋅ 10−2 0.44 3.2 ⋅ 10−2 0.38
615 2.9 ⋅ 10−3 0.77 4.2 ⋅ 10−2 0.46 2.1 ⋅ 10−2 0.39
1599 1.4 ⋅ 10−3 0.79 2.8 ⋅ 10−2 0.43 1.4 ⋅ 10−2 0.40
2665 9.0 ⋅ 10−4 0.79 2.3 ⋅ 10−2 0.41 1.2 ⋅ 10−2 0.40
7995 3.8 ⋅ 10−4 0.80 1.5 ⋅ 10−2 0.40 7.6 ⋅ 10−3 0.40

Table 4

Convergence analysis for SR-FeKo approximations (for IC1) using (𝛼 = 0.97, 𝛾 = 0.98) at three 
representative times 𝑡 = 0.07, 0.2 and 2.0. Here, the second row contains convergence analysis 
based on the 𝐿1 error and the third row, for the 𝐿2 error. We employ 2∕3-dealiasing which 
makes this computation stable for the choice of kernel and parameters quoted above.

SR 𝑡 = 0.07 𝑡 = 0.20 𝑡 = 2.00

FeKo 𝑁𝑥 Error Order Error Order Error Order

𝐿1 error

39 1.1 ⋅ 10−2 7.6 ⋅ 10−2 1.6 ⋅ 10−2
65 7.0 ⋅ 10−3 0.91 5.3 ⋅ 10−2 0.71 1.0 ⋅ 10−2 0.89
123 3.8 ⋅ 10−3 0.97 4.1 ⋅ 10−2 0.41 5.9 ⋅ 10−3 0.91
205 2.4 ⋅ 10−3 0.91 3.3 ⋅ 10−2 0.43 3.7 ⋅ 10−3 0.89
615 8.1 ⋅ 10−4 0.98 2.0 ⋅ 10−2 0.45 1.3 ⋅ 10−3 0.94
1599 3.1 ⋅ 10−4 0.99 1.2 ⋅ 10−2 0.52 5.3 ⋅ 10−4 0.96
2665 1.9 ⋅ 10−4 0.98 9.3 ⋅ 10−3 0.54 3.2 ⋅ 10−4 0.96
7995 6.4 ⋅ 10−5 0.99 5.1 ⋅ 10−3 0.54 1.1 ⋅ 10−4 0.95

𝐿2 error

39 1.3 ⋅ 10−2 1.3 ⋅ 10−1 4.3 ⋅ 10−2
65 8.4 ⋅ 10−3 0.90 9.9 ⋅ 10−2 0.59 3.4 ⋅ 10−2 0.47
123 4.5 ⋅ 10−3 0.97 7.3 ⋅ 10−2 0.49 2.5 ⋅ 10−2 0.49
205 2.9 ⋅ 10−3 0.91 5.7 ⋅ 10−2 0.47 2.0 ⋅ 10−2 0.45
615 9.8 ⋅ 10−4 0.98 3.5 ⋅ 10−2 0.46 1.1 ⋅ 10−2 0.49
1599 3.8 ⋅ 10−4 0.99 2.2 ⋅ 10−2 0.49 7.2 ⋅ 10−3 0.49
2665 2.3 ⋅ 10−4 0.98 1.7 ⋅ 10−2 0.49 5.6 ⋅ 10−3 0.49
7995 7.8 ⋅ 10−5 0.99 9.8 ⋅ 10−3 0.49 3.2 ⋅ 10−3 0.50

3.3. 2 × 2 system: 1D shallow water equation

We now extend the spectral relaxation scheme to systems of nonlinear hyperbolic conservation laws; this gives us an opportunity 
to check the efficiency of the SR method beyond the simplest case of the 1D inviscid Burgers equation. In this section, we consider 
the 1D shallow water equations, a 2 × 2 system of scalar conservation laws. This model governs the flow of a thin layer of fluid of 
constant density, which is bounded on one side by a pressure surface and on the other side by a fixed surface. In conservative form, 
the 1D shallow water equations are given by[

ℎ

ℎ𝑢

]
𝑡

+
[

𝑢ℎ

ℎ𝑢2 + 1
2𝑔ℎ

2

]
𝑥

= 0, (8a)

where ℎ(𝑥, 𝑡) is height of the fluid surface, 𝑢(𝑥, 𝑡) is horizontal velocity of the fluid, and 𝑔 is the constant of acceleration due to gravity. 
Thus, the height ℎ(𝑥, 𝑡) and the momentum ℎ𝑢 are conserved for this system.

We employ spectral relaxation schemes, with the low-order Fejér–Korovkin (SR-FeKo) and the high-order de La Vallée Poussin 
(SR-DlVP) kernels, to approximate the discontinuous solutions of Eq. (8a). We test the schemes on two sets of initial conditions (ICs): 
(𝑎) the hump of water IC is initially smooth and (𝑏) the dam break IC is initialised as a piecewise constant function. Note that, for a 
13

given IC, relaxation is applied to both ℎ and ℎ𝑢 fields with the same kernel 𝐾𝑚(𝑥) and parameters (𝛼, 𝛾). Reference solutions are the 
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high-resolution (𝑁𝑥 = 2665 cells) approximations given by Godunov finite-volume schemes of CLAWPACK. For SR approximations 
that follow, the best parameter sets (𝛼, 𝛾) are chosen manually to give the maximum visual convergence to the reference solutions. 
We report numerical evidence that the SR schemes closely model the reference solution, well beyond the time at which shocks form, 
for both ICs discussed below. Furthermore, they are capable of following the shock dynamics for the Riemann problem in Eq. (8c).

• Hump of water: The water-hump IC is given below for periodic boundary conditions on 𝑥 ∈ [−5, 5]:

ℎ(𝑥,0) = 1 + 0.4𝑒−𝛽𝑥2 , 𝑢(𝑥,0) = 0. (8b)

The hump of water, initialised with zero velocity, gives rise to two waves that move in opposite directions and steepen due to the 
effects of nonlinearity. The steepening leads to the formation of a shock at time 𝑡 ≃ 3.0. In Fig. 12, we plot the conserved variables 
ℎ(𝑥, 𝑡) and ℎ𝑢(𝑥, 𝑡) at 𝑡 = 0.5, 1.0, 2.0, 3.0 in panels (𝑎) − (𝑑), respectively. The dealiased PPS approximation on 𝑁𝑥 = 2665 points 
(grey line) and the reference solution from CLAWPACK (black line) are shown for comparison. For 𝑡 < 3 in panels (𝑎) − (𝑐), the 
PPS approximation converges to the exact solution which is smooth. After the shock formation in panel (𝑑), PPS approximations 
of both ℎ and ℎ𝑢 fields show tyger-like structures [55] that develop spontaneously in smooth parts of the solutions, away from 
the shocks. SR-FeKo approximations with (𝛼 = 0.5, 𝛾 = 0.99) (red crosses) and SR-DlVP with (𝛼 = 0.8225, 𝛾 = 0.98) (green circles) 
are plotted in the same figure. We observe that SR-FeKo and SR-DlVP are highly accurate and overlap with the reference solution 
for early times 𝑡 < 3. In panel (𝑑) of Fig. 12, SR-FeKo closely follows the reference solution and thus provides a more accurate 
approximation of the shock. The SR-DlVP approximation is also very good; however, it leads to some bounded oscillations at the 
shock.

• Dam break: This IC models the breaking of a dam that separates two levels of water at 𝑡 = 0. The water is initially at rest on 
both sides of the dam. We note that the IC used here is discontinuous and presents a greater challenge for pure pseudospectral 
methods. Furthermore, the solution is not periodic; this necessitates that we use mirror symmetrisation of the domain 𝑥 ∈ [−5, 5]
about 𝑥 = −5 to continue applying Fourier schemes. The initial configuration is given by

ℎ(𝑥,0) =
{

ℎ𝑙 if 𝑥 < 0,
ℎ𝑟 if 𝑥 > 0, 𝑢(𝑥,0) = 0, (8c)

where ℎ𝑙 > ℎ𝑟 ≥ 0.

In Fig. 13, we plot the conserved variables ℎ(𝑥, 𝑡) and ℎ𝑢(𝑥, 𝑡) at 𝑡 = 0.5, 1.0, 1.5, 2.0 in panels (𝑎) − (𝑑) respectively. The dealiased 
PPS approximation on 𝑁𝑥 = 2665 points (grey line) and the reference solution from CLAWPACK (black line) are shown for com-

parison. At early times 𝑡 = 0.5, shown in panel (𝑎), the PPS approximations of both ℎ(𝑥, 𝑡) and ℎ𝑢(𝑥, 𝑡) fields develop oscillations 
near the discontinuity, which leach into the smooth regions of the solutions at later times. We show results from the SR-FeKo 
approximation using (𝛼 = 0.55, 𝛾 = 0.99) (red crosses) and the SR-DlVP approximation using (𝛼 = 0.70, 𝛾 = 0.98) (green circles) 
in Fig. 13. We notice that the SR-DlVP approximation displays bounded oscillations near the shock, but follows the reference 
solution more closely. As it approaches the shocks, the SR-FeKo approximation is slightly overdamped and displays bounded 
oscillations on the right corners. However, far from the discontinuity, it provides a considerably accurate approximation of the 
flow fields. Both SR approximations are able to follow the movement of discontinuities in this case.

3.4. 3 × 3 system: 1D compressible Euler equations

The 1D compressible Euler equations of gas dynamics constitute a 3 × 3 system of nonlinear hyperbolic conservation laws. In 
conservative form, it is given by⎡⎢⎢⎣

𝜌

𝐸

𝜌𝑢

⎤⎥⎥⎦𝑡 +
⎡⎢⎢⎣

𝜌𝑢

(𝐸 + 𝑝)𝑢
𝜌𝑢2 + 𝑝

⎤⎥⎥⎦𝑥 = 0 , (9a)

where 𝜌(𝑥, 𝑡) is the density, 𝑢(𝑥, 𝑡) is the velocity, 𝐸(𝑥, 𝑡) is the total energy, and 𝑝 = (𝛾 −1)𝜌 is the pressure of the gas. We set 𝛾 = 1.4
for the ratio of specific heats of diatomic gases (major composition of air).

We consider the initial-boundary value problem for Eq. (9a) on the non-periodic, bounded domain 𝑥 ∈ [𝑥𝐿, 𝑥𝑅]. We use Chebyshev 
polynomials of the first kind 𝑇𝑘(𝑥) = cos(𝑘 cos−1(𝑥)) as the basis for pseudospectral projection. Discrete Chebyshev coefficients are 
determined by quadratures, analogous to Eq. (1c), using the discrete cosine transform (see REDFT00 in FFTW3 library). To implement 
boundary conditions at 𝑥𝐿 and 𝑥𝑅, these points should be present in the collocation grid. We thus use Chebyshev extrema points 
given by {𝑋𝑗 = cos(𝜋𝑗∕𝑁), 𝑗 = 0, 1, ..., 𝑁} where 𝑁 is order of the highest-order polynomial in the pseudospectral basis. Since the 
Chebyshev polynomials are defined on 𝑋 ∈ [−1, 1], we use a simple rescaling 𝑥 = (𝑋 +1)∕2, for the blast-waves IC in Eq. (9f) where 
the domain is 𝑥 ∈ [0, 1].

Since Chebyshev extrema points cluster and form a fine grid at the boundaries, we are constrained to evolve the system with a 
very small time step. For 𝑁 -point Chebyshev discretisation, the CFL stability criterion gives Δ𝑡 ∼ (1∕𝑁2). We can alleviate this 
restriction by once more rescaling the grid to redistribute the higher density of points at the walls. We follow the procedure of [87]

and apply the transformation given below to Chebyshev extrema points {𝑥𝑗 , 𝑗 = 0, 1, ..., 𝑁}:

sin−1(𝛽 𝑥𝑗 )
14

𝜒𝑗 = sin−1(𝛽)
, (9b)
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Fig. 12. Hump of water: Plot vs. 𝑥 of ℎ(𝑥, 𝑡) (left) and ℎ𝑢(𝑥, 𝑡) (right) fields. Different panels give the fields at different instants of time. We show the following 
approximations in the plot: 2∕3-dealiased PPS (grey line), SR-FeKo with (𝛼 = 0.5, 𝛾 = 0.99) (red crosses) and SR-DlVP with (𝛼 = 0.8225, 𝛾 = 0.98) (green circles). 
Dealiasing is not performed for the SR runs. The reference solution from CLAWPACK is given by Godunov-2665 (black line) for comparison. All runs have a spatial 
resolution of 𝑁𝑥 = 2665.

where we use 𝛽 = 0.999. Now, {𝜒𝑗, 𝑗 = 0, 1, ..., 𝑁} is the computational grid that we finally employ. The detailed implementation of 
boundary conditions, which we use in the test problems, is presented in Appendix B.

The relaxation kernel is now applied to the Chebyshev spectral approximations; note that 𝑁𝑥 =𝑁 and the relations 𝑚(𝑁) and 
𝜏(𝑁) remain as in Eq. (3b). We test the SR-FeKo and SR-DlVP schemes on standard test problems for shock-fitting schemes and discuss 
their performances below. The parameters (𝛼, 𝛾) are chosen manually to give the best visual convergence for these models.

• Sod shock-tube This Riemann-type problem is solved on the domain 𝑥 ∈ [−1, 1], where the boundaries at 𝑥𝐿 = −1 and 𝑥𝑅 = 1
are treated as reflecting solid walls [88]. The initial data are given by(

𝜌𝑙, 𝑢𝑙, 𝑝𝑙
)
= (1,0,1) −1 ⩽ 𝑥 ⩽ 0,(

𝜌𝑟, 𝑢𝑟, 𝑝𝑟
)
= (0.125,0,0.10) 0 ⩽ 𝑥 ⩽ 1. (9c)

In Fig. 14, we plot the fields 𝜌 (left), 𝑢 (centre), and 𝑝 (right) at consecutive times in panels (𝑎) − (𝑑). The reference solution from

HyPar (black line) is shown for comparison; it is computed using a characteristic-based 5th order WENO method for a spatial 
resolution of 𝑁𝑥 = 8000 points. The dealiased Chebyshev-PPS approximation on 𝑁𝑥 = 615 points destabilises quickly and cannot 
15

be seen in the plots; for consistency, it is shown in the legend. Despite the challenge posed by this test case for PPS schemes, the 
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Fig. 13. Dam break: Plot vs. 𝑥 of ℎ(𝑥, 𝑡) (left) and ℎ𝑢(𝑥, 𝑡) (right) fields. Different panels give the fields at different instants of time. We show the following approximations 
in the plot: 2∕3-dealiased PPS (grey line), SR-FeKo with (𝛼 = 0.55, 𝛾 = 0.99) (red crosses), and SR-DlVP with (𝛼 = 0.7, 𝛾 = 0.98) (green circles). Dealiasing is not 
performed for the SR runs. The reference solution from CLAWPACK is given by Godunov-2665 (black line) for comparison. All runs have a spatial resolution of 
𝑁𝑥 = 2665.

SR schemes are able to approximate accurately the reference solution. In particular, SR-FeKo with (𝛼 = 0.785, 𝛾 = 0.99) produces 
an oscillation-free approximation of the solution; it is however slightly overdamped near shocks and corners. The SR-DlVP 
approximation with (𝛼 = 0.94, 𝛾 = 0.95) models the piecewise profile more closely, at the cost of small, bounded oscillations near 
the corners. We do not implement 2∕3-dealiasing for these SR runs. The spatial resolution used for the spectral runs is 𝑁𝑥 = 615.

• Lax shock-tube The domain is given by 𝑥 ∈ [−1, 1] where the boundaries at 𝑥𝐿 = −1 and 𝑥𝑅 = 1 are treated as reflecting solid 
walls [37]. The initial data are given by(

𝜌𝑙, 𝑢𝑙, 𝑝𝑙
)
= (0.445,0.311,8.928) −1 ⩽ 𝑥 ⩽ 0,(

𝜌𝑟, 𝑢𝑟, 𝑝𝑟
)
= (0.5,0,1.4275) 0 ⩽ 𝑥 ⩽ 1. (9d)

For this test problem, we plot the fields 𝜌 (left), 𝑢 (centre), and 𝑝 (right) at consecutive times in panels (𝑎) − (𝑑) of Fig. 15. 
The reference solution is obtained from HyPar with 𝑁𝑥 = 8000 as detailed for the Sod shock-tube problem above. In panel (𝑎)
at time 𝑡 = 0.02, we see the dealiased Chebyshev-PPS approximation on 𝑁𝑥 = 615 points. It destabilises quickly and cannot be 
seen in panels (𝑏) − (𝑑); for consistency, we show it in the legend. The SR-FeKo scheme with (𝛼 = 0.91, 𝛾 = 0.99) produces an 
16

oscillation-free approximation of the solution; it is, however, moderately overdamped near discontinuities and corners. The SR-
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Fig. 14. Sod shock-tube: Plots vs. 𝑥 of 𝜌, 𝑢, and 𝑝 fields. Different panels (rows) give the fields at different instants of time. The reference solution from HyPar is shown 
for comparison (black line). PPS approximation (grey solid line) destabilises early for this IC and is largely absent. SR-FeKo with (𝛼 = 0.785, 𝛾 = 0.99) (red circles) 
and SR-DlVP with (𝛼 = 0.94, 𝛾 = 0.95) (green stars) approximate the reference solution closely. All the runs presented here have a resolution of 𝑁𝑥 = 615. Dealiasing 
is not performed for SR runs.

DlVP approximation with (𝛼 = 1.10, 𝛾 = 0.98) models the piecewise profile more closely, at the cost of small, bounded oscillations 
near corners. We do not implement 2∕3-dealiasing for these runs. The spatial resolution used for the spectral runs is 𝑁𝑥 = 615.

• Shu–Osher problem This test case models the interaction between a Mach-3 shock moving towards the right, and an entropy 
wave with a sinusoidal profile [89]. The domain is 𝑥 ∈ [−1, 1] and the boundary conditions are supersonic inflow at 𝑥𝐿 = −1 and 
outflow at 𝑥𝑅 = 1. The initial configuration is given by

(𝜌, 𝑢, 𝑝)𝑡=0 =
{

(3.85714, 2.629369, 10.33333) 𝑥 ≤ −0.8,
(1.0 + 𝜖 sin(𝜅𝜋𝑥), 0, 1.0) 𝑥 > −0.8, (9e)

where 𝜖 = 0.2 and 𝜅 = 5. Since the exact solution contains fine structure, we expect that a low-order scheme cannot provide 
an accurate approximation. This is reflected in the results presented in Fig. 16. Here, we plot the fields 𝜌 (left), 𝑢 (centre), and 
𝑝 (right) at consecutive times in panels (𝑎) − (𝑑). The reference solution (black line) is obtained from HyPar with 𝑁𝑥 = 8000
as discussed above for the Sod shock-tube problem. This test case is challenging for the dealiased-PPS scheme; it destabilises 
quickly and cannot be seen in panels (𝑏) − (𝑑). However, for consistency, we show it in the legend. We show the SR-FeKo 
approximations on 𝑁𝑥 = 615 points using (𝛼 = 0.95, 𝛾 = 0.97) (red circles). Since the Fejér–Korovkin kernel is of low-order, the 
SR-FeKo scheme fails to capture the oscillatory profile of the solution. By using the high-order de La Vallée Poussin kernel, the 
17

SR-DlVP approximation on the same grid, with (𝛼 = 1.14, 𝛾 = 0.95) (green stars) is able to resolve the shock as well as the fine 
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Fig. 15. Lax shock-tube: Plots vs. 𝑥 of 𝜌, 𝑢, and 𝑝 fields. Different panels (rows) give the fields at different instants of time. The reference solution from HyPar is 
shown for comparison (black line). PPS approximation (grey solid line) destabilises early for this IC and is largely absent. SR-FeKo with (𝛼 = 0.91, 𝛾 = 0.99) (red 
circles) is moderately overdamped but SR-DlVP with (𝛼 = 1.10, 𝛾 = 0.98) (green stars) approximate the reference solution closely, despite small bounded oscillations 
near corners. All the runs presented here have a resolution of 𝑁𝑥 = 615. Dealiasing is not performed for SR runs.

oscillating structure in this problem. The Gibbs oscillations at the shock for SR-DlVP approximation can be further controlled by 
choosing better parameters (𝛼, 𝛾) found through a systematic search.

• Interaction of blast waves Finally, we model the interaction of two blast waves [16], starting from the initial data,

(𝜌, 𝑢, 𝑝)(𝑥, 𝑡 = 0) =
⎧⎪⎨⎪⎩
(𝜌𝑙, 𝑢𝑙, 𝑝𝑙) 0 ⩽ 𝑥 ⩽ 0.1,
(𝜌𝑚, 𝑢𝑚, 𝑝𝑚) 0.1 ⩽ 𝑥 ⩽ 0.9,
(𝜌𝑟, 𝑢𝑟, 𝑝𝑟) 0.9 ⩽ 𝑥 ⩽ 1,

(9f)

where 𝜌𝑙 = 𝜌𝑚 = 𝜌𝑟 = 1, 𝑢𝑙 = 𝑢𝑚 = 𝑢𝑟 = 0, 𝑝𝑙 = 103, 𝑝𝑚 = 10−2, 𝑝𝑟 = 102. The domain is 𝑥 ∈ [0, 1] and the boundary conditions 
are reflecting solid walls at 𝑥𝐿 = 0 and 𝑥𝑅 = 1. This problem is a challenging testing ground for any shock-capture scheme. The 
interaction of blast waves results in fine structures which can only be resolved accurately using a high-order scheme. However, 
the ensuing fluctuations in the flow fields can challenge the scheme’s stability. In Fig. 17, we plot the fields 𝜌 (left), 𝑢 (centre), 
and 𝑝 (right) at consecutive times in panels (𝑎) − (𝑑). The reference solution (black line) in this case, is obtained using HLLE 
scheme from CLAWPACK library on 𝑁𝑥 = 8000 cells. We perform all the spectral computations on a higher-resolution grid of 
𝑁𝑥 = 1599 points. Despite the increase in resolution, the dealiased PPS approximation destabilises instantly and is thus not 
shown here. The high-order SR-DlVP approximations also destabilise early and render the scheme unusable for virtually every 
18

choice of (𝛼, 𝛾). Indeed, at early times, the SR-DlVP approximation of the blast-waves solution contains oscillations near the 
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Fig. 16. Shu–Osher problem: Plots vs. 𝑥 of 𝜌, 𝑢, and 𝑝 fields. Different panels (rows) give the fields at different instants of time. The reference solution from HyPar is 
shown for comparison (black line). The PPS approximation (grey solid line) destabilises early for this IC and is absent except in legend. SR-FeKo with (𝛼 = 0.95, 𝛾 = 0.97)
(red circles) does not give the correct solution. SR-DlVP with (𝛼 = 1.14, 𝛾 = 0.95) (green stars) is able to approximate the shock as well as the sinusoidal variation in 
the reference solution closely, despite small, bounded oscillations near corners. All the runs presented here have a resolution of 𝑁𝑥 = 615. Dealiasing is not performed 
for SR runs.

discontinuities. For the density 𝜌 and the pressure 𝑝, these oscillations produce negative values which are unphysical. Then, we 
can no longer compute 𝑐 =

√
𝛾𝑝∕𝜌 in Eq. (22), which leads to a breakdown of the spectral scheme. Here, we note that SR-DlVP 

approximations for the other test cases presented above do not destabilise in this manner because the oscillations in the fields 𝜌
and 𝑝 do not become negative-valued. In fact, the amplitude of oscillations near a shock is related to the amplitude of the shock 
(a fraction of the shock amplitude). For the blast-waves initial configuration, at the location 𝑥 = 0.1, there is an initial pressure 
discontinuity of amplitude of the order of 103 as we go from 𝑝𝑙 = 103 to 𝑝𝑚 = 10−2 in Eq. (9f), while oscillations of the order 
of 10−2 are observed for 𝑝(𝑥 ≃ 0.1, 𝑡) for 0 < 𝑡 ≪ 1. For small times 0 < 𝑡 ≪ 1, we obtain 𝑝(0.1 < 𝑥 < 0.9, 𝑡) ∼ 𝑝𝑚 = 10−2 by time 
continuity of the solution; then oscillations which develop in this region occasionally result in negative values of the pressure 
𝑝 that destabilise the scheme. For other test cases, the discontinuities are not as strong and the resulting oscillations remain 
bounded and positive in time. In Fig. 17, we present SR-FeKo approximations with (𝛼 = 1.355, 𝛾 = 0.999). The approximate 
solution provided by the low-order Fejér-Korovkin kernel is non-oscillatory and positive. Since the SR-FeKo scheme preserves 
the monotonicity and in particular the positivity of the approximate solution, this scheme remains stable and noticeably accurate 
until the time 𝑡 = 0.032 (in panels (𝑎) − (𝑐)). This low-order approximation fails, however, to resolve the fine structures following 
the interaction, especially for the density 𝜌(𝑥, 𝑡) in panel (𝑑) of Fig. 17. We do not use 2∕3-dealiasing for the SR schemes presented 
19

above.
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Fig. 17. Blast-waves interaction: Plots vs. 𝑥 of 𝜌, 𝑢, and 𝑝 fields. Different panels (rows) give the fields at different instants of time. The reference solution from

CLAWPACK (using the HLLE solver) is shown for comparison (black line). SR-FeKo with (𝛼 = 1.355, 𝛾 = 0.999) (red crosses) provides a low-order approximation of 
the solution. It fails to resolve the fine structures emanating in the wake of the blast-waves interaction in panel (𝑑). The SR-FeKo run presented here has a spatial 
resolution of 𝑁𝑥 = 1599. Dealiasing is not performed for SR runs.

We conclude that the blast-waves interaction problem presents a challenging test case for purely spectral methods (such as the 
methods SR, SP, SVV,...), which employ global spectral interpolations such as the trigonometric interpolation. To our knowledge, 
shock-capturing spectral schemes in literature, do not perform tests with this standard problem. In [20], the authors report a good 
approximation of the blast-waves solution, but this numerical scheme is not a purely spectral method since a piecewise polynomial 
(essentially non-oscillatory Lagrange polynomial interpolation) is used to interpolate the function near discontinuities, while 
spectral interpolation is used only in the smooth parts of the flow.

3.5. 1D wall approximation of the 3D-axisymmetric wall-bounded incompressible Euler equation

In this section, we apply spectral relaxation schemes to the 1D HL model, which is the wall approximation of the 3D-axisymmetric 
wall-bounded incompressible Euler equation, investigated in [2,79,80]. This model was proposed to capture the singular dynamics, 
at the wall, of the 3D-axisymmetric incompressible Euler equation and is given by

𝜕𝑡𝑢+ 𝑣𝜕𝑥𝑢 = 0, (10a)

𝜕𝑡𝜔+ 𝑣𝜕𝑥𝜔 = 𝜕𝑥𝑢, (10b)
20

𝜕𝑥𝑣 =(𝜔), (10c)
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Fig. 18. HL model: Plot vs. 𝑥 of 𝑢, 𝜔, and 𝑣 fields. Different panels give the fields at different instants of time 𝑡 = 0.003, 0.0035, 0.0036, 0.004 from panel (𝑎) − (𝑑)
respectively. The SR-DlVP runs are given for 𝑁𝑥 = 2665 (red stars) and 𝑁𝑥 = 7995 (green circles) resolutions. The best value of the parameters used in the spectral 
relaxation scheme are (𝛼 = 1.6, 𝛾 = 0.99, 𝑟 = 0.92). The black line for comparison represents the PPS approximation of a high resolution 𝑁𝑥 = 15590. The time of 
singularity 𝑡∗ = 0.0035056. Dealiasing is not performed for SR runs.

where (⋅) is the Hilbert transform. Equation (10c) represents the Biot-Savart law for this model. For more details on the formulation 
of this model, see [80,79,75]. In particular, in [14] it was shown that there exist smooth periodic initial conditions such that the HL 
model cannot have a smooth global solution starting from those data, and hence, from the Beale–Kato–Majda criterion [90], such a 
solution develops a finite-time singularity. Reference [75] used a 2∕3-dealiased Fourier pseudospectral scheme to study the singular 
dynamics of this model for initial data 𝑢(𝑥, 𝑡 = 0) = 104 sin2(2𝜋𝑥∕𝐿) and 𝜔(𝑥, 𝑡 = 0) = 0. Periodic boundary conditions were used 
on the domain 𝑥 ∈ [0, 𝐿] where 𝐿 = 1∕6. The authors reported the emergence of tygers akin to those observed for the 1D inviscid 
Burgers [55] and the 3D-axisymmetric wall-bounded incompressible Euler flow [75].

In Fig. 18, we plot spectral approximations of the singular solution of Eqs. (10); we now discuss them in detail. Since we do 
not have the exact solution for this model, we use a dealiased PPS approximation computed on a very high resolution grid with 
𝑁𝑥 = 15590 (solid black line) as the reference solution. We do not show the PPS approximations of lower resolutions for greater 
readability. For the high-resolution PPS approximation, we see the gradual emergence of tygers in smooth parts of the solution; first 
for the field 𝜔(𝑥, 𝑡) (centre column of panel (𝑏)), followed by 𝑢(𝑥, 𝑡) (left column of panel (𝑐)), and finally 𝑣(𝑥, 𝑡) (right column of panel 
(𝑑)). In PPS approximations of lower resolutions, tygers develop earlier in time but at the same locations. The link between tyger-birth 
time and the spatial resolution of PPS scheme is discussed in [55,75]. Briefly, tygers emerge in the system when the precipitating 
complex singularity moves into a strip of width Δ𝑥 which flanks the real-line, in complex space. Here Δ𝑥 ∼ 1∕𝑁𝑥 is the smallest grid 
spacing in the PPS discretisation. Increasing 𝑁𝑥 reduces the width of this strip; thus, it takes longer for the singularity to encounter 
21

the strip and for tyger-birth to occur.
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Fig. 19. HL model: (Left) Plots vs. 𝑘 of ln |�̂�𝑘|2 and (Right) plots vs. |𝑡 − 𝑡∗| of the width of the analyticity strip 𝛿 extracted from the exponential slope of the corresponding 
spectra, displayed on the left. In panel (𝑎), the spectra of SR-DlVP approximations with (𝛼 = 1.6, 𝛾 = 0.99) extend over a much larger range of wavenumbers 𝑘 compared 
to their PPS counterparts. In panel (𝑏), 𝛿(𝑡) estimates from SR-DlVP and PPS approximations are superposed. The reference 𝛿 is obtained using PPS approximation on 
a very high spatial resolution 𝑁𝑥 = 26650 points. Here, 𝑡∗ = 0.0035056 is the time of singularity in this model.

We plot SR-DlVP approximations with (𝛼 = 1.6, 𝛾 = 0.99, 𝑟 = 0.92) for two spatial resolutions: 𝑁𝑥 = 2665 (SR-DlVP:2665 in red) 
and 𝑁𝑥 = 7995 (SR-DlVP:7995 in green). In panel (𝑎) at time 𝑡 = 0.0030, both SR-DlVP approximations closely approximate the 
reference solution (black line). As we get close to the time of singularity in this model 𝑡∗ = 0.0035056, in panels (𝑏) and (𝑐) of Fig. 18, 
the SR-DlVP:7995 (green) approximation maintains a smooth tyger-free profile while also capturing the discontinuity at 𝑥 = 0, 𝐿∕2, 𝐿
in 𝜔(𝑥, 𝑡) without Gibbs oscillations. The lower resolution approximation, SR-DlVP:2665 (red) stays close to the reference solution 
but does show attenuated tygers.

As discussed in Section 1, by using the analyticity strip technique, we can track the nearest complex singularity, which can 
ultimately precipitate finite-time blowup for Eq. (10). If a field 𝑢(𝑧, 𝑡) contains a pole, of order 𝜇, close to the real-line at 
𝑧∗(𝑡) = (𝑥∗ + 𝑖𝛿) ∈ ℂ, the Fourier spectrum displays a strong exponentially-decaying tail in the high-𝑘 region. It can be shown that 
�̂�(𝑘) ∼ |𝑘|−(𝜇+1)𝑒−𝑘𝛿𝑒𝑖𝑘𝑥∗ as 𝑘 →∞ [77,57]. We can thus extract 𝛿(𝑡) from the slope of the exponentially-decaying tail of the spec-

trum. However, at times close to the time of singularity, the loss of spectral convergence in the PPS approximation and subsequent 
thermalisation prevents us from getting reliable estimates for 𝛿(𝑡). We can delay the loss of spectral convergence, and thermalisation, 
by using the dissipative SR schemes. Furthermore, SR schemes allow us to retain almost all of the wavenumbers at a given resolution, 
as they avoid 2∕3-dealiasing.

In panel (𝑎) of Fig. 19, we show the logarithm of the Fourier spectra, ln |�̂�𝑘|2, at time 𝑡 = 0.00303 before the time of singularity. We 
compare the decaying tails of the spectra of SR-DlVP and PPS schemes for two different resolutions. PPS:2665 (blue) and PPS:7995 
(pink) are 2∕3-dealiased. Thus, they do not use the full range of wavenumbers available to them. The corresponding SR-DlVP ap-

proximations with 𝑁𝑥 = 2665 (violet) and 𝑁𝑥 = 7995 (orange) do not have this constraint; the exponential tail is registered over a 
much larger range of wavenumbers for the SR approximations. Having a large range of fitting is key to a reliable estimation of 𝛿(𝑡). 
In panel (𝑎), the spectrum of SR-DlVP:2665 follows that of the higher resolution PPS:7995 approximation. However, there is a slope 
change at the end of the exponential tail; this coincides with the window over which DlVP filter is dissipative (negative slope of the 
filter in Fourier space). For a given resolution 𝑁𝑥, the DlVP kernel with 𝑟 = 0.92, acts as an almost low-pass filter with a cutoff at 
𝑘 = 2𝜋

𝐿
×0.92 × (𝑁∕2 −1)𝛾 ≈ 43000 for 𝑁𝑥 = 2665. In the spectra of SR-DlVP:2665 the slope change occurs around 𝑘 ∼ 40000 as read 

from the Fig. 19 and is consistent with our estimate. We plot the SR-DlVP:7995 (orange) spectrum to once again demonstrate the 
expansion of the range of fitting for 𝛿(𝑡) compared to PPS:7995 (pink).

We now compare the estimate for the width of the analyticity-strip 𝛿(𝑡) extracted from SR-DlVP approximations and PPS-

approximations. In panel (𝑏) of Fig. 19, we show the 𝛿(𝑡) extracted from the corresponding spectra in panel (𝑎). In SR-DlVP spectra, 
the fit-window used for determination of 𝛿 is restricted to exclude the range of Fourier modes over which the de La Vallée Poussin 
kernel has a negative slope; the fit ends before the slope change (red line over SR-DlVP:7995 shown in orange). Despite the restriction 
imposed above, we still retain a much larger range of available wavenumbers when compared to PPS approximations of the same 
resolutions. We use the 𝛿 obtained from a very high-resolution PPS approximation using 𝑁𝑥 = 26650 as a reference (solid black line). 
The estimates of 𝛿 extracted from the SR-DlVP spectra for the resolution of 𝑁𝑥 = 2665 (violet) and the higher resolution of 𝑁𝑥 = 7995
(orange) overlie the black line and are consistently accurate for longer times than analogous PPS estimates for the same resolution. 
Therefore, we conclude that SR-DlVP schemes are effective in increasing the time until which analyticity-strip techniques can reliably 
be used to track singularities in a given model.

To conclude this section, when applying the SR or SP methods to obtain solutions of PDEs for which the convergence of the method 
is unknown, and for which explicit exact solutions (numerically implementable) are unavailable (as for the HL model discussed 
above), the optimal choice of (𝛼, 𝛾) can be obtained roughly as follows: We start with a sufficiently high value of 𝛼 > 0 and low value 
of 0 < 𝛾 < 1 to ensure that the resulting SR or SP schemes are numerically stable. We can then tune the parameter set by lowering 
𝛼 and increasing 𝛾 to ensure that we retain as many modes as we can (hence increasing the accuracy of the scheme) while ensuring 
stability. The SR approximation obtained in the above manner at a lower resolution can be checked for convergence in a suitable norm 
w.r.t. a PPS approximation at a moderate resolution. The optimal parameter set can then be employed to obtain SR approximations 
22

at much higher effective resolutions.
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4. Conclusions

We have presented an extensive numerical study of the novel spectral relaxation and spectral purging schemes for the 1D inviscid 
Burgers equation in a periodic domain. Here, we have investigated the role of different kinds of kernels when used in the spectral 
relaxation and purging schemes. We have carried out numerical convergence analysis using a low-order kernel and a high-order 
kernel; we observe increased order of convergence after the shock formation for the novel schemes in both cases when compared 
to pure pseudospectral methods. The SR approximations obtained using high-order de La Vallée Poussin kernel is similar to the 
one obtained using SVV methods; both approximations show bounded oscillations near the shock. SR schemes that use the low-

order Fejé-Korovkin kernel provide a non-oscillatory and maximum-principle preserving approximation to the entropic solution for 
the 1D inviscid Burgers equation. We have performed a detailed study of the aliasing instability in the evolution of a single-mode 
initial condition for the 1D inviscid Burgers equation; we conclude that dealiasing homogenises the growth-rate of aliasing errors 
across initial conditions, but can be expensive. Dealiasing can stabilise SR schemes at smaller values of 𝛼; the resulting scheme is 
less-diffusive, with a higher order of convergence.

We have numerically extended the application of the novel schemes to systems of 1D nonlinear hyperbolic systems of conservation 
laws, namely, the 1D shallow water equations and the 1D compressible Euler equations of gas dynamics. Here, we demonstrate the 
performance of SR approximations using Féjer–Korovkin and de La Vallée Poussin kernels for a variety of test problems. Except for 
the interaction of blast waves for the 1D compressible Euler equations, the SR approximations were capable of accurately resolving 
the location and profile of the shock and other sharp structures in the flow fields. The ability to use a range of kernels that best fit the 
attributes and properties of the solutions at hand, allows for greater flexibility and power in the SR schemes. This is, in particular, 
best observed for the case of the Shu–Osher initial data evolved with the 1D Euler equation. The use of a higher-order kernel helps 
retain the oscillatory structures of the flow that do not respect monotony, while capturing the shock profile and its evolution in time. 
The use of high-order kernels allows us to achieve higher accuracy and confirm visual convergence to shock capture, while preserving 
the spectral convergence in the smooth parts of the solution away from the discontinuity. They, however, result in the reappearance 
of the Gibbs oscillations in a reduced neighbourhood of the discontinuity. This is in line with what has been observed for the SVV 
method and for filtering approaches that use high-order kernels [17]. We note here that the parameters (𝛼, 𝛾), that minimise artefacts 
and best capture shock profiles, vary based on the problem at hand, the initial data, as well as the spatial resolution used in a given 
computation.

We also note that the extension of SR and SP schemes to Chebyshev pseudospectral methods is easy; we use Chebyshev SR schemes 
to model challenging test problems for the 1D compressible Euler equations. We do not need to perform additional boundary treatment 
for SR schemes; the characteristic compatibility method (CCM) for pure pseudospectral methods works accurately. Therefore, we 
conclude that spectral relaxation and purging schemes are very effective at capturing the shock profiles in discontinuous solutions 
that are known otherwise to challenge traditional spectral methods.

Finally, we applied the SR schemes for the approximation of singular flows in the 1D HL model. Here, we find that SR approx-

imations using the high-order de La Vallée Poussin kernel are capable of following the reference solution closely, while remaining 
free from Gibbs oscillations and tygers. The estimates obtained for 𝛿(𝑡) using the SR approximations agreed with the reference to an 
appreciable degree. This is a key success for SR schemes; they can be used for tracking the finite-time singularity for much longer 
times compared to a traditional pseudospectral scheme that has the same spatial resolution. We highlight, however, that the choice of 
kernel and parameters is crucial to the extension and has to be checked by using resolution studies to achieve a good scaling regime. 
We are yet to test the method with systems where there is a paradigm change in the decay of 𝛿(𝑡). This will be the subject of future 
work, in addition to the application of this method for three-dimensional PDEs.

The parameters (𝛼, 𝛾) used for the best approximations were chosen manually for all test problems, except for the case of the 1D 
inviscid Burgers equation. This was done so as to ensure maximum overlap between the reference solution and the approximate one, 
while minimising any spurious oscillations. Further tuning of the parameters (𝛼, 𝛾) may produce better approximations for all the 
cases that we have discussed. Optimisation strategies such as the gradient descent method can be used to automate the search for the 
optimal parameter set, once we determine the optimal range. For this step, machine-learning strategies may also be employed.
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Appendix A. Filters

Here, we give functional forms of the kernels that we use in the manuscript. We first summarise the positive kernels and then, 
the kernels that do not satisfy this property. Then, we briefly detail the implementation of the Spectrally Vanishing Viscosity (SVV) 
method for the 1D inviscid Burgers equation.

In real space, a kernel is denoted by 𝐾𝑚(𝑥). We define the convolution operator as 𝑚(⋅) =𝐾𝑚 ∗ (⋅) in Eqs. (3c) and (4c). Note 
that the convolution operation, in real space, simplifies to a product in Fourier spectral space. For a 𝑁 -point Fourier pseudospectral 
discretisation, 𝐾𝑚(𝑥) =

∑|𝑘|≤𝑁 𝐾𝑚(𝑘)𝑒
𝑖 2𝜋
𝐿
𝑘𝑥

, where {𝐾𝑚(𝑘)}|𝑘|≤𝑁 are the Fourier series coefficients of the kernel computed according 
to Eq. (1c).

A.1. Positive kernels

For the following kernels, we use the parameter set (𝛼, 𝛾) given in the definitions of 𝑚(𝑁) and 𝜏(𝑁) in Eqs. (3b):

𝑚 =𝑁𝛾, 0 < 𝛾 < 1, 𝜏 =𝑁−𝛼, 𝛼 > 0. (11)

These kernels 𝐾𝑚(𝑥) are positive in real space. Their analytical expressions and further discussion can be found in [84]. Here, we 
only give the Fourier coefficients {𝐾𝑚(𝑘)}|𝑘|≤𝑁 . The advantage of positive kernels is that they preserve the monotonicity property 
and the maximum principle; hence they do not introduce spurious oscillations which can sometimes make the numerical scheme 
unstable. Their drawback is that they are of low order (at most second order). We plot vs. |𝑘|∕𝑁 , the Fourier coefficients �̂�𝑚(𝑘) of 
these kernels in panel (a) of Fig. 20, for 𝛾 = 0.99.

A.1.1. Fejér–Korovkin kernel

𝐾𝑚(𝑘) =

{(
1 − |𝑘|

𝑚+2

)
cos
( |𝑘|𝜋
𝑚+2

)
+ 1

𝑚+2 cot
(

𝜋

𝑚+2

)
sin
( |𝑘|𝜋
𝑚+2

)
if |𝑘| ≤𝑚,

0 if |𝑘| >𝑚.
(12a)

A.1.2. Jackson kernel

𝐾2𝑚−2(𝑘) =
⎧⎪⎨⎪⎩

1
2𝑚
(
2𝑚2+1

) (3|𝑘|3 − 6𝑚|𝑘|2 − 3|𝑘|+ 4𝑚3 + 2𝑚
)

if |𝑘| ≤𝑚,

1
2𝑚
(
2𝑚2+1

) (−|𝑘|3 + 6𝑚|𝑘|2 − (12𝑚2 − 1
) |𝑘|+ 8𝑚3 − 2𝑚

)
if 𝑚< |𝑘| ≤ 2𝑚− 2,

0 if |𝑘| > 2𝑚− 2.

(13a)

A.1.3. Jackson–de La Vallée Poussin kernel

𝐾2𝑚−1(𝑘) =

⎧⎪⎪⎨⎪⎪⎩
1 − 3

2
||| 𝑘𝑚 |||2 + 3

4
||| 𝑘𝑚 |||3 if |𝑘| ≤𝑚,

1
4

(
2 − ||| 𝑘𝑚 |||)3 if 𝑚< |𝑘| ≤ 2𝑚− 1,

0 if |𝑘| > 2𝑚− 1.

(14a)

A.2. Other kernels

Here, we would like to summarise the other kernels that we use in the convolution operator in Fig. 8. These kernels are not 
positive. These kernels do not preserve the monotonicity property and the maximum principle, therefore they could introduce spurious 
oscillations which can sometimes make the numerical scheme unstable. Their advantage is that they are of high order (at most spectral 
order). We use the parameter 𝛼 as in the definition for the relaxation time scale 𝜏 =𝑁−𝛼 . Our use of 𝛾 and other parameters change 
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according to the attributes of the kernel and are discussed below.
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Fig. 20. Plots vs. |𝑘|∕𝑁 of the Fourier coefficients 𝐾𝑚(𝑘) of the kernels (𝑎) Fejér–Korovkin (FeKo), Jackson (Jksn) and Jackson–de La Vallée Poussin (JDlVP) for 
𝛾 = 0.99. (𝑏) Analogous plots for the de La Vallée Poussin (DlVP) kernel. We also show the profile of Fejér–Korovkin for comparison.

A.2.1. de La Vallée Poussin kernel (DlVP)

The de La Vallée Poussin kernel function with parameters (𝑛, 𝑝) is given as

𝐾𝑚(𝑘) =
⎧⎪⎨⎪⎩
1 if |𝑘| ≤ 𝑛,
𝑛+𝑝−|𝑘|

𝑝
if 𝑛 ≤ |𝑘| ≤ 𝑛+ 𝑝,

0 if |𝑘| ≥ 𝑛+ 𝑝.

(15a)

Here, we have introduced a parameter 𝑟 such that 𝑛 = 𝑟𝑁𝛾 and 𝑝 = (1 − 𝑟)𝑁𝛾 . For the studies presented in Sections 3.1-3.4, we 
use 𝑟 = 0.5. For the 1D HL model in Section 3.5, we use 𝑟 = 0.9. This kernel is a high-order approximation kernel compared to the 
ones defined previously. We plot vs. |𝑘|∕𝑁 , the Fourier coefficients �̂�𝑚(𝑘) of this kernel for (𝛾 = 0.99, 𝑟 = 0.5) in panel (a) of Fig. 20. 
In panel (b) of Fig. 21, we plot and compare the Fourier coefficients of this kernel for 𝑟 = 0.5 and 0.9, with 𝛾 = 0.99.

A.2.2. Adaptive spectral filter from Tadmor et al. (2005) (TT05)

The adaptive spectral filter of [41,15] is given by

𝐾𝑝(𝑘) =

{
exp

(
(|𝑘|∕𝑁)𝑝

(|𝑘|∕𝑁)2−1

)
if |𝑘| ≤𝑁,

0 if |𝑘| ≥𝑁.
(16a)

The order 𝑝 =𝑁𝛾 and 𝜏 =𝑁−𝛼 . This kernel does not recover root-exponential accuracy since we do not implement an adaptive 
choice of the order 𝑝𝑁 (𝑥). The non-adaptive choice of 𝑝 ∼𝑁𝛾 , which we use, is not dependent on the evaluation of 𝑑𝑥 and was shown 
to lead to a loss of convergence near the discontinuity. The optimal parameter set that was used in Fig. 8 is (𝛼 = 0.95, 𝛾 = 0.1) [see 
panel (a) of Fig. 21].

A.2.3. Spectral filter from Majda et al. (1978) (MMO78)

The smoothing kernel used by [10] are partitions of unity of the following form,

𝐾𝑚(𝑘) =

{
1 if |𝑘| ≤𝑚(𝑁),
𝑒−𝜉(𝑘−𝑚)

2𝑝
if 𝑚(𝑁) ≤ |𝑘| ≤𝑁.

(17)

Here, 𝑚(𝑁) =𝑁𝛾 and 𝜉 = 10−𝛽 . The optimal parameter set that was used in Fig. 8 is (𝛼 = 0.87, 𝛾 = 0.87, 𝛽 = 2.5, 𝑝 = 1) [see panel 
(a) of Fig. 21].

A.2.4. Gaussian regularised Shannon kernel of Sun et al. (2002)

The kernel used in the work of [91,92] is the Gaussian regularised Shannon Kernel. Its Fourier coefficients are given by

𝛿𝜎,Δ(𝑘) =
1
2

[
erf

(
𝜎√
2

(
𝜋

Δ
− 𝑘
))

+ erf

(
𝜎√
2

(
𝜋

Δ
+ 𝑘
))]

for |𝑘| ≤𝑁, (18)

where Δ =𝑁−𝛾 is comparable to the grid spacing and sinc(𝑡) = sin(𝜋𝑡)∕(𝜋𝑡) is the normalised sinc function, which is defined at the 
origin as, sinc(0) = 1. Furthermore, 𝜎 = 𝑟Δ, where we can choose the order of the filter by the choice of 𝑟 = 1, 1.5, 2, … [see panel (a) 
of Fig. 21].

The optimal parameter set that was used in Fig. 8 is (𝛼 = 0.85, 𝛾 = 0.6, 𝑟 = 1.5).
We conclude that the crucial difference in the success of the filters described above lies in the perfect flatness of the filter at low 
25

frequency and in the detailed profile of the ramp (sharpness of the slope) at high frequency.
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Fig. 21. Plots vs. |𝑘|∕𝑁 of the Fourier coefficients 𝐾𝑚(𝑘) of the kernels (𝑎) Tadmor et al.’s adaptive spectral filter (TT05), Spectral filter of Majda et al. (MMO58) 
and the Gaussian Regularised Shannon kernel of Sun et al. (RSK) for the parameters listed in the legend. These kernels are used for the results shown in Fig. 8. (𝑏)
Analogous plots for the de La Vallée Poussin kernel used for the 1D HL model (orange) in Fig. 18 and the rest of the models (blue) of Sections 3.1- 3.4. We observe 
that the higher value of 𝑟 = 0.9, allows us to retain unmodified modes for a larger range of wavenumbers. The dissipation acts in the sloped area which has an extent 
of 𝑝 wavenumbers.

A.3. The spectrally vanishing viscosity (SVV) method

The 1D inviscid Burgers equation (5) is modified by including viscous regularisation [11] on the RHS, giving:

𝜕𝑡𝑢𝑁 + 𝜕𝑥

(
𝑁

1
2𝑢

2
𝑁

)
= 𝜖𝜕𝑥

(
𝑄𝑁 ∗ 𝜕𝑥𝑢𝑁

)
. (19a)

Here, 𝑢𝑁 (𝑥, 𝑡) is the Fourier pseudospectral approximation of 𝑢(𝑥, 𝑡) on a uniform grid of 𝑁 points. Periodic boundary conditions are 
used on the domain 𝑥 ∈ [0, 𝐿], where 𝐿 = 1 for the IBVP discussed in Sections 3.1 and 3.2.

We can then write the above equation in Fourier spectral space, where the convolution operation in real space becomes a product 
in spectral space, as follows:

𝜕𝑡�̂�(𝑘, 𝑡) + 𝑖
(2𝜋
𝐿
𝑘
)
𝑃𝑁 ( 12𝑢

2
𝑁
)

⋀

(𝑘, 𝑡) = −𝜖
(2𝜋
𝐿
𝑘
)2

�̂�(𝑘)�̂�(𝑘, 𝑡), (19b)

where 2𝜋
𝐿
𝑘 is the Fourier wavenumber. Reference [49] uses the following 𝐶∞ kernel as it improves the SVV method:

�̂�(𝑘) = exp
(
− (𝑘−𝑁)2

(𝑘−𝑀)2

)
, 𝑘 >𝑀, (19c)

where 𝜖 =𝑁−1 and 𝑀 = 2
√
𝑁 for the results presented in Fig. 7. Different parameters were used in Fig. 11; they are listed in the 

legend.

Appendix B. Implementation of characteristic boundary conditions for 1D compressible Euler equations in Chebyshev 
spectral methods

We use the formalism established in [48] and briefly summarise characteristic boundary treatment for the 1D compressible Euler 
equation. We then discuss two sets of boundary conditions: (𝑎) reflecting solid walls at both boundaries and (𝑏) supersonic inflow at 
𝑥𝐿 and outflow at 𝑥𝑅, which we use in Section 3.4. Note that [48] considers the case of the 3D compressible Euler equation; we can 
use the same treatment for the 1D case by simply neglecting the terms corresponding to the 𝑥2 and 𝑥3 coordinates. Furthermore, we 
do not consider the effect of gravitation on the fluid and thus we can set 𝑔 = 0 to derive the boundary conditions for our case.

The 1D compressible Euler equations are given in conserved form in Eqs. (9a). We define �̃�(𝐱, 𝑡) = (𝜌, 𝐸, 𝜌𝑢) as the vector of 
conserved quantities. We reformulate the system in terms of primitive variables 𝐔 = (𝜌, 𝑝, 𝑢) as this simplifies the boundary treatment. 
Now, Eqs. (9a) can be written as

𝐔𝑡 +𝐀𝐔𝑥 = 0 , (20)

where the Jacobian matrix 𝐀 is a 3 × 3 matrix is given by

𝐀 =
⎛⎜⎜⎝
𝑢 0 𝜌

0 𝑢 𝛾𝑝

0 1∕𝜌 𝑢

⎞⎟⎟⎠ . (21)

Since the above system of equations is hyperbolic, 𝐀 is diagonalisable and has real eigenvalues.

B.1. The characteristic analysis

The boundary treatment of hyperbolic PDEs is greatly simplified by using the characteristic variable formulation. In this formu-
26

lation, the PDEs represent the propagation of waves of the characteristic variables 𝑧𝑖 at their respective velocities 𝜆𝑖 ; here, 𝑧𝑖 and 
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corresponding 𝜆𝑖 are functions of 𝐔(𝑥, 𝑡). Depending on the sign of the 𝜆𝑖 at the boundaries, the associated characteristics point into 
or out of the domain. The characteristics that point out of the domain at a given boundary are defined entirely by the solution at 
or within the boundary, and we are not required to specify boundary conditions for these waves. However, the inward pointing 
characteristics represent waves that are incoming and require boundary conditions to specify their behaviour completely. We thus 
require a boundary treatment for these characteristic variables. We begin by solving the eigenvalue problem for the Jacobian matrix 
𝐀 which gives us the eigenvalues/characteristic velocities 𝜆𝑖 and the eigenvectors which are used to transform primitive variables to 
characteristic variables.

The eigenvalues of the matrix 𝐀 are

𝜆1 = 𝑢− 𝑐, 𝜆2 = 𝑢, 𝜆3 = 𝑢+ 𝑐, (22)

where 𝑐 =
√

𝛾𝑝

𝜌
is the speed of sound. The corresponding left eigenvectors 𝐥𝑖 of 𝐀 are given by

𝐥𝑇1 = (0,1,−𝜌𝑐), (23a)

𝐥𝑇2 = (𝑐2,1,0), (23b)

𝐥𝑇3 = (0,1, 𝜌𝑐). (23c)

Diagonalisation for 𝐀 is obtained by using the matrices: 𝐒, where the columns are the right eigenvectors {𝐫𝑗}𝑗=1,2,3, and 𝐒−1, 
where the rows are the left eigenvectors {𝐥𝑖}𝑖=1,2,3. The diagonalisation is then given by

𝐒−1𝐀𝐒 =𝚲, (24)

where 𝚲 is the diagonal matrix of eigenvalues with Λ𝑖𝑗 = 𝜆𝑗𝛿𝑖𝑗 . Applying this transformation to Eq. (20), we obtain

𝐒−1𝐔𝑡 +𝚲𝐒−1𝐔𝑥 = 0 (25)

whose components are

𝐥𝑇𝑖 𝐔𝑡 + 𝜆𝑖𝐥𝑇𝑖 𝐔𝑥 = 0, 𝑖 = 1,2,3. (26)

We define a vector  for the boundary analysis given by

𝑖 ≡ 𝜆𝑖𝐥𝑇𝑖 𝐔𝑥. (27)

For the 1D compressible Euler equations, the components 𝑖 are given by

1 = 𝜆1(𝜕𝑥𝑝− 𝜌𝑐 𝜕𝑥𝑢), (28a)

2 = 𝜆2(𝑐2𝜕𝑥𝜌− 𝜕𝑥𝑝), (28b)

3 = 𝜆3(𝜕𝑥𝑝+ 𝜌𝑐 𝜕𝑥𝑢). (28c)

Here, we remark that we use 3 where [48] uses 5 and so on. The problem of implementing boundary conditions is reduced to 
the problem of computing the appropriate values for 𝑖 . We later discuss the specifics of the computation of 𝑖 in the domain and 
at boundaries, and expand on the role played by boundary conditions in these specifications; but we first lay down the boundary 
treatment, once the values of 𝑖 are computed and known. The primitive formulation in Eq. (25) can be written in terms of 𝑖 as 
follows,

𝐔𝑡 + 𝐒 = 0. (29)

Here, we define 𝐝 ≡ 𝐒 whose components are given by

𝐝 =
⎛⎜⎜⎝
𝑑1
𝑑2
𝑑3

⎞⎟⎟⎠ =
⎛⎜⎜⎝
(1∕𝑐2)(2 −

1
2 (3 +1))

(1∕2)(3 +1)
(1∕2𝜌𝑐)(3 −1)

⎞⎟⎟⎠ . (30)

Since we work with the conservative form of the 1D compressible Euler equations in Section 3.4, we use the transformation 
𝐏𝑖𝑗 = 𝜕�̃�𝑖∕𝜕𝐔𝑗 . Then, the conservative formulation for Eqs. (29) in terms of 𝐝 is given by

�̃�𝑡 + 𝐏𝐝 = 0. (31)

Equations (9a) are now rewritten in terms of the vector 𝑖 for simple boundary treatment as follows,

𝜕𝑡𝜌+ 𝑑1 = 0, (32a)

1 𝑑2
27

𝜕𝑡𝐸 +
2
𝑢2𝑑1 + 𝛾 − 1

+ 𝜌𝑢𝑑3 = 0, (32b)
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𝜕𝑡(𝜌𝑢) + 𝑢𝑑1 + 𝜌𝑑3 = 0. (32c)

B.2. Boundary treatment

We now describe the procedure for calculation of 𝑖 and corresponding 𝑑𝑖, and their dependence on boundary conditions.

• For all points in the interior of the domain 𝑥𝐿 < 𝑥 < 𝑥𝑅, we compute 𝑖 using Eqs. (28) and then compute components of 𝐝 using 
Eq. (30). We then use these values to solve for �̃� from Eqs. (32).

• For the left (right) boundary at 𝑥 = 𝑥𝐿(𝑥𝑅), we first compute the characteristic velocities {𝜆𝑖, 𝑖 = 1, 2, 3} using Eq. (22). When the 
velocity points out of the domain, i.e., for the left boundary, 𝜆𝑖(𝑥𝐿) ≤ 0 and for the right boundary 𝜆𝑖(𝑥𝑅) ≥ 0, we compute the 
corresponding 𝑖 using Eq. (28) since the associated outgoing characteristic wave is completely determined by the solution in 
the solution domain. When the velocity points into the domain, i.e., 𝜆𝑖(𝑥𝐿) > 0 or 𝜆𝑖(𝑥𝑅) < 0, we compute the corresponding 𝑖

using the boundary conditions since the associated characteristic wave is incoming and its specification depends on the solution 
near the boundary as well as the boundary conditions. We discuss the specifics below for two sets of boundary conditions that 
we use in the manuscript:

(a) Reflecting solid walls at 𝑥𝐿 and 𝑥𝑅: At a solid wall, the velocity 𝑢 = 0 at all times. The initial data reflects this boundary 
condition, as seen in the case of the shock tubes and the blast-waves problems in Section 3.4.

At the left boundary 𝑥𝐿, 𝜆1 = −𝑐 < 0 is associated with an outgoing wave and hence 1 must be computed from the definition 
in Eq. (28). At this boundary, 𝜆2 = 0 and thus, 2 = 0. For the incoming characteristic wave associated to 𝜆3 = 𝑐 > 0, we specify 
3 by requiring that 𝑢|𝑥𝐿 = 0 for all time. We see that 𝑢(𝑥𝐿, 𝑡) will remain 0 in Eq. (32c), if we set 3 = 1.

We have the inverse scenario at the right boundary 𝑥𝑅 . Eigenvalues have the same values, but now 𝜆3 is associated with an 
outgoing wave. We thus compute 3 from the values of the solution at the boundary using Eq. (28). Again, we have 𝜆2 = 0
and thus, 2 = 0. The incoming characteristic wave is now associated with 𝜆1 > 0 and has to be set by the relation 1 =3.

(b) Supersonic outflow at 𝑥𝐿 and non-reflecting subsonic inflow at 𝑥𝑅: Supersonic inflow at 𝑥𝐿 is characterised by 𝑢 > 𝑐. 
This implies that for all 𝑖, 𝜆𝑖 > 0. Thus, we are required to specify the values of all components of  using the boundary 
conditions. Since supersonic flow in the case of the Shu–Osher problem is implemented as a steady-state boundary condition, 
we set  = 0.

At the right boundary 𝑥𝑅, we have subsonic outflow, and, in particular, we use a non-reflecting boundary so that the waves 
produced in the domain exit the domain without causing any reflections or artificial resonance. We impose this condition by 
requiring that 1 = 0, as described in Section 3.2.6.1 of [48].
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