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The formation of the TRAPPIST-1 system in 
two steps during the recession of the disk 
inner edge

Gabriele Pichierri    1,2 , Alessandro Morbidelli3,4, Konstantin Batygin    1 & 
Ramon Brasser5,6

TRAPPIST-1 hosts seven planets. The period ratios of neighbouring pairs are 
close to the 8:5, 5:3, 3:2, 3:2, 4:3 and 3:2 ratios in increasing distance from the 
star. The Laplace angles associated with neighbouring triplets are observed 
to be librating, proving the resonant nature of the system. This compact, 
resonant configuration is a manifest sign of disk-driven migration; however, 
the preferred outcome of such evolution is the establishment of first-order 
resonances, not the high-order resonances observed in the inner system. 
Here, we explain the observed orbital configuration with a model that is 
largely independent of the specific disk migration and orbital circularization 
efficiencies. Together with migration, the two key elements of our model are 
that the inner border of the protoplanetary disk receded with time and that the 
system was initially separated into two subsystems. Specifically, the inner b, c, d 
and e planets were initially placed in a 3:2 resonance chain and then evolved to 
the 8:5–5:3 commensurability between planets b, c and d due to the recession 
of the inner edge of the disk, whereas the outer planets migrated to the inner 
edge at a later time and established the remaining resonances. Our results pivot 
on the dynamical role of the presently unobservable recession of the inner 
edge of protoplanetary disks. They also reveal the role of recurring phases of 
convergent migration followed by resonant repulsion with associated orbital 
circularization when resonant chains interact with migration barriers.

The main difficulty in explaining the observed1,2 orbital configuration 
of the TRAPPIST-1 system consists in reproducing the inner planets’ 
8:5 and 5:3 period ratios combined with the outer planets’ vicinity 
to first-order 3:2 and 4:3 resonances. N-body simulations of the full 
seven-planet TRAPPIST-1 system undergoing classical3,4 disk-driven 
type-I migration show that the natural outcome of this scenario is the 
formation of a simpler first-order 3:2–3:2–3:2–3:2–4:3–3:2 resonant 
chain5,6. Reference 7 argued for a two-subsystem structure based on 
the libration of Laplace angles but noted that the observed period 

ratios could be obtained from the disk-driven migration by adjust-
ing the migration and eccentricity-damping timescales. Reference 8 
showed that the 8:5 and 5:3 ratios can be built from an original 3:2–3:2 
resonance if planets enter the inner cavity of the disk. Their model 
contains two critical assumptions. First, it invokes enhanced disk-driven 
eccentricity damping (about 50 times more efficient than expected 
for typical type-I migration), which was found to be advantageous for 
obtaining the observed TRAPPIST-1 resonant chain. Second, it involves 
a requirement on the timing of arrival of the outer planets to ensure that 
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all period ratios by lowering the eccentricities, which is associated 
with a rapid perihelion precession while maintaining formal libration 
of the resonant angles (known as resonant repulsion). It is striking 
that, whatever the initial NAM (that is, the eccentricities), after the 
dissipation-driven NAM increase, if the NAM is such that planets b 

the inner system does not evolve past the 8:5–5:3 ratios. Planet e must 
enter into resonance with planet d at the appropriate time to block the 
migration of planet c into a three-body c–d–e Laplace resonance when 
the former is in the right orbital position. The existence and extent of 
the appropriate time window depend on the migration parameters 
introduced to mimic planet–disk interactions. Drawing from these 
ideas, we develop a model whose key elements are independent of the 
disk migration parameters, which thereby removes the need for specific 
disk migration and damping efficiencies. Our model invokes a simple 
timing constraint for the arrival of the outer planets that depends only 
on the rate of recession of the inner edge of the disk.

As in refs. 7,8, we considered inner and outer TRAPPIST-1 subsys-
tems. The first step was to consider the evolution of the inner system 
alone near the favoured 3:2 commensurabilities. Specifically, we inves-
tigated how the orbital period ratios could increase so that the 8:5–5:3 
period ratios for planets b, c and d are reached and how this resonant 
repulsion naturally corresponds to a decrease in eccentricities9–11. Note 
that in a first-order resonant chain, the actual period ratios between 
adjacent planets are not exactly equal to the resonant ratios (for exam-
ple, 3:2)12. Instead, these ratios depend on the planets’ eccentricities. 
The latter are all correlated to each other by a global resonant gauge, 
namely the total angular momentum of the system normalized by the 
reference resonant location (see Fig. 1a for, for example, a 3:2–3:2–3:2 
four-planet chain and Methods). Thus, the period ratios and eccen-
tricities do not evolve independently of each other. Processes such 
as dissipation that result in an increase of the normalized angular 
momentum (NAM) result in a predictable concurrent increase of 
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Fig. 1 | Evolution of a 3:2 resonant chain under dissipation. a, Coloured dotted-
dashed curves show predicted equilibria for a TRAPPIST-1b, c, d and e system 
locked in a 3:2–3:2–3:2 resonance in the orbital period ratio versus eccentricity 
(e) plane for various NAM values (the global resonant gauge of the system’s state, 
which increases as indicated by the dashed arrow). When the planets are deep in 
resonance, their orbital state must be in an equilibrium state determined solely 
by the NAM. Four fixed values of the NAM were chosen for explanatory purposes. 
The corresponding equilibrium period ratios and eccentricities of the four 
planets are all linked, as shown by the arrows. For one of them (arrows in black), 
Tc/Tb ≃ 8/5 and Td/Tc ≃ 5/3, which are the presently observed period ratios of these 
planets. b, Simultaneous crossing of the 8:5–5:3 resonance in the b–c versus c–d 

period ratios plane in a simulation of the TRAPPIST-1b, c, d and e system starting 
from a deep 3:2 chain as the NAM increases in time. c, Evolution in the period 
ratio versus e plane (as in a). Lighter coloured dotted-dashed lines are the same 
as in a, whereas continuous lines represent the simulated evolution (some lines 
are on top of each other). Notice the kick in the eccentricity at the simultaneous 
crossing of the 8:5–5:3 resonance for planets b–c–d. d, For the same run, 
coloured continuous lines show the evolution of the period ratios over time 
(expressed in units of a timescale τ in the bottom axis) as the NAM increases (top 
axis). The simultaneous 8:5–5:3 crossing (predicted in the top panels) is indicated 
by a vertical dashed red line.

Table 1 | Chronological sequence of events leading to the 
assembly of the full TRAPPIST-1 chain in our model

Phase Dynamical step Main driving 
processes

Figure

0 Assembly of primordial 
b–c–d–e 3:2 chain; planets 
b–c–d fall into the inner 
cavity and planet e reaches 
the inner edge

Classical type-I 
migration with 
clearing of the 
inner disk and tidal 
dissipation

Extended 
Data Fig. 2

1 Planet e recedes with the 
inner edge and planets 
b–c–d divergently cross the 
8:5–5:3 resonance through 
a NAM increase; OLT 
re-compactifies them

Expansion of the 
inner edge, tidal 
dissipation and outer 
Lindblad torque 
(OLT)

Fig. 1

2 The inner and outer 
subsystems join and the 
full TRAPPIST-1 chain is 
assembled

Tidal dissipation 
+ OLT (inner 
system), classical 
type-I migration 
(outer system) and 
expansion of the 
inner edge

Fig. 2
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and c are close to an 8:5 period ratio, then planets c and d are close to 
the 5:3 ratio. Thus, that planets b, c and d are observed to be close to 
these period ratios is no coincidence but evidence of a past evolution 
in the 3:2 resonant chain7,8,13.

Figure 1 depicts this process quantitatively. Originating deep in 
a 3:2–3:2–3:2 resonant chain after migration and with a specific value 
of the NAM dictated by their eccentricities, planets b, c, d (in the disk 
cavity) and e evolve under dissipation, which increases their NAM. 
Figure 1b–d shows that all period ratios increase as expected9,10,14. 
When the period ratio Tc/Tb reaches 8:5, Td/Tc simultaneously reaches 
5:3. As these resonances are crossed divergently, the planets’ eccen-
tricities suddenly jump to larger values (Fig. 1c). If the eccentricities 
increase by more than a factor of two, as happens here given the meas-
ured planetary masses (note that planets b and c are the most massive 
in the inner system), theory predicts that the original first-order 
resonant chain is broken14,15. Thus, any further NAM increase no longer 
alters the Tc/Tb and Td/Tc ratios (Fig. 1d). The planets are close to but 
not inside the 8:5 and 5:3 resonances because capture in these reso-
nances is impossible during divergent migration. This scheme is a 
first step to a more accurate reconstruction of the dynamical history 
of the TRAPPIST-1 system, and it demonstrates that, although the 
presence of resonances indicates that migration must have occurred, 
other processes must have been at play concurrently with migration 
to shape its current architecture. If this scenario is appealing, the 
relevant questions are these: (1) What is the plausible origin of dis-
sipation (NAM increase)? (2) How many planets were involved in the 
original resonant chain?

For the specific dissipation mechanism, a first possibility is effi-
cient dissipation onto the planets (refs. 7,9–11,14; Methods). However, 
if such a dissipative force had been efficient enough to drive planets b, 
c and d into an 8:5–5:3 period ratio from a primordial 3:2–3:2 configura-
tion, it would also have been able to rapidly dampen their eccentricities 
after their jump, thus restoring the 3:2–3:2 resonant chain and restart-
ing the divergent evolution (Extended Data Fig. 1). Another possibility is 
that planets b and c were closer to the star than the inner edge of the disk 

because (1) they were pushed there by the migration of planets d and e,  
(2) they opened a gap in the disk, (3) the inner disk cavity expanded 
due to magnetic torque and photo-evaporation or (4) there was a 
combination of these processes. In this case, if planet d had remained 
at the inner disk’s edge, planet c would have felt a negative one-sided 
Lindblad torque (OLT) from the disk (Methods), which would push c 
inwards, away from d. This is equivalent to a NAM increase due to the 
resonance gauge (Fig. 1a). However, because this push acts directly on 
planet c, it would have continued after the crossing of the 5:3 resonance 
between planets d and c, bringing the system away from the observed 
period ratio (unless a fortuitous and timely disappearance of the disk 
is invoked or a three-body resonance assembled between planets c, d 
and e at a suitable time, as in ref. 8).

Results
Building on these ideas, we propose here a way to obtain the repul-
sion of the orbits of TRAPPIST-1b, c and d that is largely insensitive 
to orbital damping parametrizations, pivoting instead on physical 
mechanisms that are expected to occur in the environment where 
the planets formed. We presuppose only that the inner edge of 
the disk receded with time16,17 while the inner system was locked 
in the 3:2 resonant chain. We assume a four-planet 3:2 resonant 
chain like that simulated in Fig. 1, with planet e sitting at the inner 
edge of the disk being our preferred scenario (this is phase 0 in 
Table 1; Extended Data Fig. 2). As the disk’s edge recedes, planet e 
recedes in concert, as it is anchored to it by the so-called co-orbital 
corotation torque18. Consequently, the separation between plan-
ets e and d increases in time, which causes the NAM and all period 
ratios to increase due to the resonance gauge. After the 8:5 and 5:3 
resonance crossing and the breakdown of the 3:2 chain, planet e  
keeps receding, leaving planets b, c and d unaffected (Fig. 1d; in this 
simulation, the timescale τ, which describes the inner-edge recession 
rate, τ = red,0/(dred/dt), was 700 kyr, where red(t) is the radial location 
of the disk inner edge and red,0 is its initial location). Simultaneously, 
planet d starts to migrate inward driven by an OLT. This migration is 
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Fig. 2 | Joining of the inner and outer subsystems. Evolution of the semimajor 
axes shown with continuous coloured lines for all planets, which are also labelled 
by circles whose sizes reflect the observed size of each planet. In our favoured 
scenario, planet e followed the inner edge whereas planets b, c and d were in the 
inner cavity. Planets f, g and h joined the system later, undergoing inward disk-
driven migration. The disk is depicted by the shaded area, with the lighter shading 
on the right indicating that the disk will eventually disperse. As planet g is more 
massive than f and h, it will probably capture f in resonance (the 4:3 being the 

favoured commensurability5) and the two planets will migrate in together. When 
f reaches the 3:2 resonance with e, the combined push from f and g is sufficient 
to dislodge planet e from the inner edge (shown as the blue line bordering the 
top shaded area). Driven by a full OLT, the orbit of planet e decays faster than 
those of f and g, and it approaches the 3:2 resonance with d. Planet h is the last 
one to migrate in. It captures g in the 3:2 resonance to complete the chain. au, 
astronomical unit.
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necessarily slow as only its outer 2:1 resonance falls in the disk8. Thus, 
planets c and d are now slowly convergently migrating on moderately 
eccentric orbits, which were pumped during the earlier divergent 
migration and resonance crossing, and they could be captured in the 
5:3 resonance. Then, they keep slowly migrating inward together, with 
planet c capturing b in the 8:5 resonance. Eccentricity damping for 
planets inside the gas cavity is provided by tides inside the planets. The 
mysterious 8:5–5:3 resonance is thus established (phase 1 in Table 1).

In the current TRAPPIST-1 system, planet e is in the 3:2 period ratio 
with planet d, not arbitrarily away from it, as Fig. 1d would suggest. The 
most reasonable explanation is that planets f, g and h were not part 
of the original resonant chain but migrated into the inner part of the 
disk at some later time, as expected from the ringed-formation para-
digm17,19,20. As planet f approached e, the two became captured in the 3:2 
resonance, which excited planet e’s eccentricity and dislodged it from 
the disk’s inner edge18,21. In fact, planet g is more massive than f, so the 
f–g pair had probably already become locked into the most favoured5 
4:3 resonance before approaching planet e, although this is not strictly 
necessary (Supplementary Information). Planet e thus left the inner 
edge and underwent OLT-driven inward migration approaching planet 
d. At this moment, no resonance with planet d had been re-established, 
so the inner system remained unaffected.

During its inward migration, planet e had a non-vanishing forced 
eccentricity due to the resonant interaction with f. Planet e must, how-
ever, have crossed a series of high-order resonances with planet d (9:5, 
5:3 and 8:5), which it had to skip before reaching the 3:2 period ratio 
with d, where it is observed today. Capture in resonances of order 
higher than 1 is only a probabilistic event, whereas it is guaranteed 
for first-order resonances in the adiabatic limit. In addition, planet e 
experienced a NAM increase with respect to planet f due to the former’s 
initially fast, full-OLT-driven migration (Methods). This evolution is 
naturally associated with the efficient damping of the eccentricities, 
which reduces the strength of the higher-order resonances and allows 
for a smooth joining of the inner and outer chains. The advantage of 
this mechanism is that it relies solely on the analytical evolution tracks 
depicted in Fig. 1 and not on enhanced disk-driven e-damping efficien-
cies (which may not be guaranteed22,23, especially near the disk inner 
edge24). Our experiments show that, depending on the phases of the 
angles at approach and with different disk profiles, in up to 22% of 
simulations, the higher-order resonances between e and d are skipped 
and the 8:5–5:3 resonance for planets b–c–d is not disrupted, allowing 
for a successful joining of the inner and outer systems at the required 
period ratios at the end of this assembly phase (see ‘Joining the inner 
and the outer systems’ in the Supplementary Information, Extended 
Data Fig. 3 and Extended Data Table 1 for a parameter study with differ-
ent surface densities). This presupposes that, to avoid planets c and d 
being subsequently captured in the 2:1 resonance, the inner edge has 
not moved outwards enough to make the period ratio between planets 
d and e larger than 2:1 before planet f approaches the inner system. A 
timing condition concerning the arrival of the outer planets to join 
the inner chain is implicit in a model that assumes a two-subsystem 
formation history. In our model, we also specifically require that planet 
f reaches the inner system before the inner edge has taken planets d and 
e outside the 2:1 period ratio (the timing of which is set by the average 
inner-edge recession rate after the 8:5–5:3 b–c–d resonance has been 
crossed). Finally, planet h, being less massive than g, migrates in and 
captures g into their 3:2 resonance at a later time, thus establishing 
the whole observed 8:5–5:3–3:2–3:2–4:3–3:2 chain (Fig. 2; see also 
phase 2 in Table 1).

After gas removal and the disappearance of the disk, the planets 
undergo a tidal evolution lasting several gigayears. Figure 3a shows 
that, for realistic tidal parameters6, the eccentricities of all planets 
are consistent with those determined by observations2, within the 
uncertainties, after about 2,500 to 3,000 circularization timescales 
of planet b. In the resonant chain that our model produces, the planets 

are in Laplace resonances by triplets, as presently observed2 (Fig. 3b). 
Moreover, neighbouring planet pairs between TRAPPIST-1c and g are in 
two-body mean motion resonances. The eccentricities of planets b and 
c reached vanishingly low values due to their tidal evolution (Fig. 3a), 
so that their 8:5 resonance angles stopped librating and presently 
show circulation. Still, all planets were in two-body resonances with 
their neighbours at the end of the disk-phase assembly of the system, 
which locked their period ratios close to the presently observed ones. 
This explains how the mysterious high-order 8:5–5:3 period ratios for 
planets b, c and d are not fortuitous but indicate a past evolution where 
both these resonances were active. Although the Laplace resonant 
states have been verified observationally2, proving the two-body reso-
nance states requires precise knowledge of the longitudes of the orbital 
pericentres, which is difficult to achieve. Improved characterization 
of the dynamical state of the TRAPPIST-1 system will eventually allow 
us to verify our model prediction.
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Fig. 3 | Post-nebular evolution under tidal dissipation of the TRAPPIST-1 
system. a, Decay of the eccentricities due to tidal e-damping, showing that for 
reasonable tidal parameters, the presently observed eccentricities are reached 
after around 2,500 to 3,000 circularization timescales of planet b (error bars 
represent the 1σ confidence limits from ref. 2). b, Libration of the (reduced) 
Laplace angles defined in equation (3) compared with the libration centres 
and amplitudes (shown as error bars) observed from different draws from the 
posterior distribution from ref. 2.
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Discussion
Our model builds on previous ideas such as the separation into two 
subsystems7,8 and the role of the disk inner edge in anchoring plan-
ets17,25. Here, we are able to explain the complex orbital architecture of 
the TRAPPIST-1 planets in a model that is largely insensitive to specific 
migration and eccentricity-damping efficiency parameters by pivoting 
on physical processes that are expected to occur in protoplanetary 
disks. The recession of the inner edge provides a natural dynamical 
pathway to assemble the otherwise unlikely5 8:5–5:3 resonances. Such 
an inner-edge evolution has been predicted by theoretical models16 but 
is presently inaccessible to observations. Our work provides indirect 
evidence of its role in the assembly of the TRAPPIST-1 system. In our 
model, the (unknown) rate of the inner-edge recession rate after the 
8:5–5:3 b–c–d resonance crossing should not be so fast that planets 
d–e exceed the 2:1 period ratio before the arrival time (also unknown) 
of planet f (‘Planets’ formation history and physical characterisation’ 
in the Supplementary Information). However, note that the location 

of the inner edge is set by the magnetic truncation radius Rt ∝ Ṁ
−2/7
g  

(ref. 16), with the gas accretion rate Ṁg ∝ (1 + t/τacc)
−η, where τacc is a 

(time-averaged) accretion timescale26 and η ≳ 1, as expected for viscous 
accretion27. Thus, the inner-edge recession rate is expected to slow 
down over time. Moreover, our model shows that the strong eccentric-
ity damping needed to obtain these specific configurations can be the 
result of divergent migration in a resonant configuration inside the 
disk cavity, rather than direct damping from the disk, thus removing 
a tension with the hydrodynamical simulations8. All these ingredients, 
which are essential for reproducing the TRAPPIST-1 system within our 
current understanding of planet–disk interactions, may have played 
an important role in other planetary systems as well and open the pos-
sibility of a precise reconstruction of their dynamical history, as we 
have done here for the TRAPPIST-1 system.

Methods
Mean motion resonances and Laplace angles
The analytical treatment of chains of mean motion resonances is the 
subject of many works12,28,29 and is reasonably well understood, so we 
do not reproduce it here. We detail only the main points used in the 
analytical calculations.

Consider N planets labelled by their distance from the star. If plan-
ets i and i + 1 are close to a pi + qi:pi mean motion resonance, with pi and 
qi integers, then the period ratio Ti+1/Ti ≃ (pi + qi)/pi. After expanding 
the gravitational potential describing planet–planet interactions in a 
Fourier series, all terms of the potential that do not contain the resonant 
combination (pi + qi)λi+1 − piλi can be averaged out (dropped), as they 
are fast angles. Moreover, by the d’Alembert rules, the only harmonics 
that appear at lowest order in the eccentricities are

ψ(qi ,0)
i ∶= ( pi + qi)λi+1 − piλi − qiϖi

( associatedwith a termproportional to eqii ) ,

ψ(qi−1,1)
i ∶= ( pi + qi)λi+1 − piλi − (qi − 1)ϖi − ϖi+1

( termproportional to eqi−1i e1i+1) ,

ψ(qi−2,2)
i ∶= ( pi + qi)λi+1 − piλi − (qi − 2)ϖi − 2ϖi+1

( termproportional to eqi−2i e2i+1) ,

… ,

ψ(0,qi)
i ∶= ( pi + qi)λi+1 − piλi − qiϖi+1 ( termproportional to eqii+1) .

(1)

Here, λi and ϖi are the planets’ mean longitudes and longitudes of 
pericentres, respectively. The ψi are the (two-body) resonant angles for 
the pi + qi:pi mean motion resonance and represent the relevant inter-
action terms that drive the dynamics. For example, for the 3:2 mean 

motion resonance between planets TRAPPIST-d and e, p = 2 and q = 1 
(first-order resonance) and there are two resonant angles: 3λe − 2λd − ϖd 
and 3λe − 2λd − ϖe. For the 5:3 mean motion resonance between plan-
ets TRAPPIST-c and d, p = 3 and q = 2 (second-order resonance), and 
there are three resonant angles: 5λd − 3λc − 2ϖc, 5λd − 3λc − ϖc − ϖd and 
5λd − 3λc − 2ϖd. When two planets are in resonance, some or all resonant 
angles are librating, which represents a dynamical state contained 
within a resonant island in phase space. Note that all resonant interac-
tion terms are proportional to the eccentricities to the power qi, and 
they, therefore, contribute less for larger qi or smaller eccentricities 
(the resonant islands cover less volume in phase space).

Note that if a triplet of consecutive planets i, i + 1 and i + 2 lies 
in a resonant chain, one can build appropriate combinations of the 
two-body resonant angles of the two pairs to obtain an angle that 
depends on the mean longitudes of the three planets but not on any of 
the pericentres. For example, with a pi + 1:pi resonance for the inner pair 
and pi+1 + 1:pi+1 for the outer pair, then the combination of the resonant 
angles (pi + 1)λi+1 − piλi − ϖi+1 (inner pair’s resonance and pericentre of 
the outer planet) and (pi+1 + 1)λi+2 − pi+1λi+1 − ϖi+1 (outer pair’s resonance 
and pericentre of the inner planet) removes the dependence on the 
pericentre ϖi+1:

ψ( pi+1+1,−(pi+1+pi+1),pi)
i ∶= (( pi+1 + 1)λi+2 − pi+1λi+1 − ϖi+1)

− (( pi + 1)λi+1 − piλi − ϖi+1)

= ( pi+1 + 1)λi+2 − ( pi+1 + pi + 1)λi+1 + piλi.

(2)

Such three-body angles are called Laplace angles. If both resonant 
angles are librating, the Laplace angle must also librate. As the Laplace 
angles for triplets of planets do not involve the pericentres but only 
the mean longitudes λi, which are determined precisely by the transit 
times, their libration is easier to observe compared to the libration of 
the two-body resonance angles in exoplanetary systems, for which 
information about the pericentres is harder to obtain.

The Laplace angles that have been reported by ref. 2 to be librating 
in the TRAPPIST-1 chain are

ψL,1 = 2λb − 5λc + 3λd = −(3λc − 2λb − ϖc) + (3λd − 2λc − ϖc),

ψL,2 = 1λc − 3λd + 2λe = [−(5λd − 3λc − 2ϖd) + 2(3λe − 2λd − ϖd)]/3,

ψL,3 = 2λd − 5λe + 3λf = −(3λe − 2λd − ϖe) + (3λf − 2λe − ϖe),

ψL,4 = 1λe − 3λf + 2λg = [−(3λf − 2λe − ϖf) + (4λg − 3λf − ϖf)]/2,

ψL,5 = 1λf − 2λg + 1λh = [−(4λg − 3λf − 2ϖg) + (3λh − 2λg − ϖg)]/3.

(3)

Note that some of these angles are obtained from two-body resonant 
angles after dividing by an integer (the greatest common divisor of the 
integers multiplying the angles)30. However, only non-reduced angles 
actually appear in the Fourier expansion of the gravitational potential. 
Division by an integer is equivalent to a phase-folding of the angles.

Resonant equilibria for a 3:2 resonance chain
If all planet pairs in a planetary system are in pi + 1:p1 two-body reso-
nances, planet–planet interaction terms that do not involve resonant 
angles can be dropped. Thus, the resonant model will not depend on 
any one of the longitudes λi but only on their resonant combinations. 
This introduces, in a regime without external dissipation or forcing, 
an extra constant of motion 𝒦𝒦, a resonant scaling parameter12,31. For 
an N-planet 3:2 chain, this constant of motion takes the form11

𝒦𝒦 =
N
∑
i=1

( 23 )
i−1

mi√μ0ai, (4)

where mi are the planets’ masses and μ0 = 𝒢𝒢M∗ is the standard gravita-
tional parameter of the central star. We define the NAM as ℒ/𝒦𝒦, where 
ℒ = ∑N

i=1 mi√μ0ai(1 − e2i ) is the total (orbital) angular momentum, which 
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is a conserved quantity in a non-dissipative regime. As the planetary 
problem is scale-free and 𝒦𝒦  is proportional to a1/2, this is equivalent to 
reasoning in terms of semimajor axis ratios rather than the absolute 
semimajor axes. The global state of the resonant system in rescaled 
quantities is, thus, completely determined by the NAM.

With this scheme at hand, using the analytical treatment of reso-
nances (for example, ref. 11), one can find, for a given value of the NAM, 
a resonant equilibrium in phase space by imposing libration of the 
resonant angles. This results in curves parametrized by the NAM that 
track the resonant states as a function of the orbital elements, as shown 
in Fig. 1. That the resonant locations do not coincide with period ratios 
exactly equal to the nominal ratios (pi + 1)/pi but deviate away from 
exact commensurability for small eccentricities is simple to under-
stand. At the centre of the resonant island, the libration of a resonant 
angle like (pi + 1)λi+1 − piλi − ϖ (where ϖ is either ϖi or ϖi+1) imposes that 
( pi + 1)ΩKep,i+1 − piΩKep,i =

d
dt
[( pi + 1)λi+1 − piλi] =

dϖ
dt

=∶ ϖ̇ . As ϖ̇  is pro-
portional to 1/e, for faster perihelion precession rates (lower eccentrici-
ties), the orbital periods of the planets will be farther away from exact 
commensurability. The dotted-dashed orange line in Fig. 1b is the same 
curve but in the period ratio space Tc/Tb versus Td/Tc, showing how, by 
starting very close to a 3:2–3:2 period ratio commensurability, one 
naturally crosses the 8:5–5:3 chain for a system undergoing a NAM 
increase. This peculiarity of the phase space near a 3:2–3:2 chain has 
already been observed by, for example, ref. 13.

Planet–disk interactions, disk structure and modelling of the 
inner edge
To model planet–disk interactions, we follow the prescription of ref. 
32 derived from three-dimensional hydrodynamical simulations for 
planets with planet-to-star mass ratios like those of the TRAPPIST-1 
system. This prescribes the torque and eccentricity damping felt by a 
planet deeply embedded in the disk33 in a similar way to other works 
on the TRAPPIST-1 system5,6,8:

ΓtI = (dℒ
dt

)
tI
= − ℒ

τmig,tI
,

(de
dt
)
tI
= − e

τe,tI
.

(5)

As in refs. 5,6, we use the migration prescription from ref. 32, which 
is consistent with three-dimensional hydrodynamical simulations of 
planets of this mass range embedded in disks. We discuss in ‘Calcula-
tion of one-sided Lindblad torques’ in the Supplementary Information 
the modelling of the OLT felt by a planet that has fallen into the cavity.

We model the static disk surface density as a power law multiplied 
by a factor to reproduce the drop in gas density at the inner cavity:

Σ(r) = ℛΣ0(
r
r0
)
−αΣ,0

, (6)

where Σ0 is a reference density at a reference radius r0 (we take, for 
example, r0 = 0.025 au, which is between the current locations of plan-
ets d and e) and αΣ,0 is the slope of the unbroken-power-law disk (at 
larger separations away from the inner edge). We chose an underlying 
power-law exponent αΣ,0 = 3/5, which is appropriate for the viscously 
heated region of the disk, as was done in ref. 6. For the surface density 
Σ0, we tested values spanning different orders of magnitude (Extended 
Data Table 1). We used a factor ℛ given by

ℛ = ℛ(r; red,hed,wed) = G ( r − red
hedredwed

) , (7)

where red is the reference location of the inner edge, hed ≔ h(red) is the 
aspect ratio of the disk at red and wed represents an inner-edge width, 
which we take to be 1, although we also experimented with a value of 

0.5. We consider a constant aspect ratio across the disk for simplicity, 
h(r) = h0, and thus the flaring index βfl = 0, as in previous works6,8. We 
chose h0 = 0.05, but the actual value of the aspect ratio has the sole 
effect of rescaling the capture eccentricities attained after the estab-
lishment of the 3:2 chain, as ecapt ∝ h. However, after the resonant repul-
sion driven by the receding inner edge, this information is completely 
lost. In this work, the function G is given by

G(ξ ) ∶= tanh(2ξ ) + 1
2 , (8)

which satisfies G(ξ) ≈ 0 if ξ ≲ −1 and G(ξ) ≈ 1 if ξ ≳ 1. The choice of the hyper-
bolic tangent was informed by non-ideal magneto-hydrodynamical 
simulations34 and has been used in many N-body works35,36. The specific 
functional form differs, however, slightly from similar descriptions of 
disk inner edges in previous papers35,36, as it has the advantage of being 
differentiable at all radii. This means that the local surface density slope

αΣ = αΣ(r) ∶= −d logΣ
d log r

(r) (9)

is a continuous function such that αΣ(r) ≈ αΣ,0 for r ≳ red. The continu-
ity of the local slope αΣ(r) is an advantage with respect to previous 
prescriptions when calculating the torque felt by a planet at the inner 
edge, which depends on αΣ, as it eliminates the presence of unphysical 
discontinuities in the torque.

Once the inner b–c–d–e 3:2–3:2–3:2 chain is built, we assumed that 
planets b, c and d fall into the inner cavity, whereas planet e remains in 
the disk and reaches the inner disk edge. We mimic this in our N-body 
simulations as an evolution in which the gas around planets b, c and 
d is slowly removed (a clearing of the inner region of the disk). To 
this effect, we implemented a time-dependent gas surface density 
prescription given by

Σ(r, t) = ℛ̃(t)Σ0(
r
r0
)
−αΣ,0

. (10)

The new time-dependent ℛ̃ is taken here as

ℛ̃(t) ∶= ℛin + (ℛfin −ℛin)G̃ (
t − t0
tin − t0

) , (11)

where ℛin = ℛ(r; red,in,hed,in,wed,in), ℛfin = ℛ(r; red,fin,hed,fin,wed,fin) and G̃(ξ ) 
is a function that is zero for ξ < 0, 1 for ξ > 1 and smooth for 0 < ξ < 1. We 
take, for example,

G̃(ξ ) ∶=
⎧⎪
⎨⎪
⎩

0, if ξ ≤ 0,

(cos(π(ξ + 1)) + 1)/2, if 0 < ξ < 1,

1, if ξ ≥ 1.

(12)

The effect of equations (10) through (12) is to simulate the clearing of 
the inner region of the disk so that the final inner-edge position is at 
red,fin, which we assumed lies between the orbits of planets d and e. The 
exact functional form is unimportant, as is the timescale over which 
this evolution takes place (tin − t0), as long as the evolution is adiabatic 
(‘Evolution of the Trappist-1b,c,d,e inner system: capture in the 3:2 
chain and clearing of the inner disk’ in the Supplementary Information).

The shift in the inner-edge position is simply accomplished by 
changing the value of red in equation (7). We experimented with vari-
ous functional forms for the drift of the inner edge. All gave similar 
results based on the theoretical tracks depicted in Fig. 1. At the end of 
the assembly of the TRAPPIST-1 system, the disk is removed by mul-
tiplying the surface density by an exponentially decreasing function  
of time.
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Tidal dissipation
As the TRAPPIST-1 planets are very close to the central star, they are 
expected to experience substantial tidal dissipation10,37. In our simula-
tions, tidal effects act as eccentricity-damping dissipative forces with

(de
dt
)
tide

= −e
21ΩKep

2
k2
Q

M∗
mpl

(Ra )
5
=∶ − e

τe,tide
, (13)

where R is the planet’s radius, Q is the tidal quality factor and k2 is the 
planetary Love number37. Tides inside the star are neglected. There are 
large uncertainties on the value of k2/Q, but this can be estimated to be 
of the order of 10−3 from dynamical arguments7,8 or interior modelling6. 
Note that the role of eccentricity damping in the assembly phase is to 
counteract the push provided by the torque29 (in this case the outer 
Lindblad torque). As the torque is proportional to the local surface 
density around the inner edge of the disk, any uncertainty in the value 
of k2/Q can be carried over to a modified local surface density.

Data availability
The time series of the simulations displayed in the manuscript and the 
data used to plot the analytical curves in Fig. 1 are available at https://
github.com/GabrielePichierri/FormingTrappist-1. Data corresponding 
to the observed physical and orbital state of the TRAPPIST-1 system 
were taken from https://github.com/ericagol/TRAPPIST1_Spitzer.

Code availability
The N-body integrations were run using the publicly available SWIFT 
subroutine package (https://www.boulder.swri.edu/~hal/swift.html), 
which has been modified with the extra forces needed. The other sub-
routines are available upon request from the corresponding author 
(G.P.). The analytical calculations were performed using the compu-
tational software Mathematica.
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Extended Data Fig. 1 | Purely tidal evolution of a Trappist-1b,c,d,e 3:2 – 3:2 – 
3:2 chain. This evolution is similar to the one in Fig. 1, with the sole difference that 
NAM increase is instead provided by a dissipative force onto the planets inside 
the cavity. The evolution of period ratios (panel (a)) and eccentricities (panel 
(b)) is equivalent to that of Fig. 1 as expected, until the crossing of the double 
8:5 – 5:3 resonance. At this point, unlike the case of NAM increase provided by 

a receding inner edge (Fig. 1), the dissipative force quickly re-establishes a 3:2 
– 3:2 commensurability between planets b,c and d by efficiently lowering their 
eccentricities, thus restoring the resonant repulsion mechanism. Thus, Tc/Tb and 
Td/Tc continue to grow past the observed 8:5 – 5:3 ratios, while planet e jumps out 
of resonance. This shows that direct dissipation onto the planets alone is not as 
robust a mechanism to explain the assembly of the inner-most 8:5 – 5:3 chain.
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Extended Data Fig. 2 | Assembly of a primordial 3:2 chain among planets 
Trappist-1b,c,d,e. Planets b,c,d,e form a 3:2 – 3:2 – 3:2 chain inside the disc (top 
shade area), followed by planets b, c and d entering the inner disc cavity, with 
planet e migrating and reaching the inner edge (the blue line enclosing the top 
shaded area). The evolution of the semi-major axes is plotted in panel (a). Each 
planet is indicated by a coloured circle whose size reflects the observed size of 

the planet. This N-body simulation mimics the entry of planets b, c and d inside 
the inner cavity as a removal of the inner portion of the disc surrounding these 
planets. The corresponding evolution of the surface density in this phase is 
sketched in the panel (b), where the arrow indicates the drop of surface density 
in time (see also the dashed region in panel (a) and the shift in the initial and final 
position of the inner edge).
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Extended Data Fig. 3 | The planets’ period ratios while the inner and outer 
subsystems are joined. Two examples of the joining of the inner system (with b, 
c and d in their 8:5 – 5:3 resonance) with the outer system are shown (see also the 
left panel of Fig. 2). Panel (a): planets f and g already in their 4:3 resonance. Panel 
(b): planets f and g close, but not yet inside, their 4:3 resonance. The evolution in 
both cases is very similar: planet e interacts with planet f via their 3:2 resonance 

(red curve) and starts to migrate inward with respect to planet d (green curve). 
Note in particular that, when planet e crosses high-order resonances with 
planet d, the period ratio Tf/Te increases slightly, which is associated with 
very efficient ee-damping (see Fig. 1a on the structure of 3:2 resonances). This 
efficient damping helps in preventing spurious captures in unwanted high-order 
resonances.
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Extended Data Table 1 | Statistical study of the successful joining of the inner and outer system

We detail the success probabilities of joining the Trappist-1b,c,d Trappist-1,e,f,g subsystems for different surface densities Σ0 (cfr. Eq. (6), with r0 = 0.025 AU, αΣ,0 = 3/5). The left and right columns 
represent the extreme cases where the inner 8:5 – 5:3 resonance between planets b, c, and d has already been established by the OLT on planet d or not, respectively.
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